
BAA-00-06-SNK
FOCUSED RESEARCH TOPIC 5

BY MARC STIEGLER AND MARK MILLER

Report Name: 
A Capability Based Client: The DarpaBrowser

COMBEX INC.

CONTACTS

TECHNICAL MARC D. STIEGLER

PO Box 711
Kingman AZ 86402
Voice: (928) 718-0758
Cell Ph.: (928) 279-6869
Email: marcs@skyhunter.com Fax: 413-480-0352

ADMINISTRATIVE HENRY I. BOREEN

P.O. Box 4070
Rydal PA19046
Voice: 215-886-6459
Email: hboreen@comcast  .net  
Fax: 215-886-2020

DATE OF REPORT

26 June 2002





Combex/Focused Research Topic 5/BAA-00-06-SNK 11/18/2002

TABLE OF CONTENTS

Executive Summary ............................................................................................................1

DarpaBrowser Capability Security Experiment ............................................................5
Introduction ......................................................................................................................5

Goals ..............................................................................................................................5
Principle of Least Authority (POLA) ........................................................................5
Failures Of Traditional Security Technologies .....................................................6
Capability Security ......................................................................................................7
E Programming Platform ...........................................................................................8

Preparation for the Experiment ....................................................................................8
Building CapDesk ........................................................................................................8
Building the E Language Machine ...........................................................................9
Building the DarpaBrowser .....................................................................................10
Building the Renderers ............................................................................................12
Taming Swing/AWT ...................................................................................................13

Limitations On the Approach .....................................................................................15
The Experiment .............................................................................................................16
Results .............................................................................................................................17
Lessons Learned ...........................................................................................................17

General Truths ...........................................................................................................17
Specific Insights ........................................................................................................19

Post-Experiment Developments ................................................................................24
Closing Vulnerabilities .............................................................................................24
Development of Granma's Rules of POLA ...........................................................26
Introduction of SWT ..................................................................................................27
Assessment of Capabilities for Intelligent Agents and User Interface Agents
.......................................................................................................................................28

Conclusions ...................................................................................................................30

References.............................................................................................................................32

Appendices............................................................................................................................36

Appendix 1: Project Plan .................................................................................................38

Appendix 2: DarpaBrowser Security Review ..............................................................43

Appendix 3: Draft Requirements For Next Generation Taming Tool
(CapAnalyzer) ....................................................................................................................78

Appendix 4: Installation Procedure for building an E Language Machine ...........80

Appendix 5: Powerbox Pattern ......................................................................................90

Appendix 6: Granma's Rules of POLA .........................................................................95

Appendix 7: History of Capabilities Since Levy .........................................................99

i





Combex/Focused Research Topic 5/BAA-00-06-SNK 11/18/2002

A Capability Based Client: The DarpaBrowser
Executive Summary

The broad goal of this research was to assess whether capability-based
security [Levy84] could achieve security goals that are unachievable with
current traditional security technologies such as access control lists and
firewalls. The specific goal of this research was to create an HTML browser
that could use capability confinement on a collection of plug-replaceable,
possibly malicious, rendering engines. In confining the renderer, the
browser would ensure that a malicious renderer could do no harm either to
the browser or to the underlying system.

Keeping an active software component such as an HTML renderer
harmless while still allowing it to do its job is beyond the scope of what can
be achieved by any other commercially available technology: Unix access
control lists, firewalls, certificates, and even the Java Security Manager are
all helpless in the face of this attack from deep inside the coarse
perimeters that they guard. And though the confinement of a web
browser's renderer might seem artificial, it is indeed an outstanding
representative of several large classes of crucial security problems. The
most direct example is the compound document as so well known in the
Microsoft Office Suite: one can have a single Microsoft Word document
that has embedded spreadsheets, pictures, and graphics, all driven by
different computer programs from different vendors. Identical situations
(from a security standpoint) arise when installing a plug-in (like RealVideo)
into a web browser, or an Active-X control into a web page.

In such a compound document none of the programs need more than a
handful of limited and specific authorities. None of them need the authority
to manipulate the window elements outside their own contained areas.
They absolutely do not need the authority to launch trojan horses, or read
and sell the user's most confidential data to the highest bidder on EBay.
Yet today we grant such authority as a matter of course, because we have
no choice. Who can be surprised, with this as the most fundamental truth
of computer security today, that thirteen year old children break into our
most secure systems for an afternoon's entertainment?

To tackle the problem, Combex used the EE programming language, an open
source language specifically designed to support capability security in
both local and distributed computing systems. We used EE to build
CapDesk, a capability secure desktop, that would confine our new browser
(the DarpaBrowser) which would in turn use the same techniques to even
more restrictively confine the renderer. Once we had completed draft
versions of the CapDesk, DarpaBrowser, and Malicious Renderer, we
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brought in an outside review team of high-profile/high-power security
experts to review the source code and conduct live experiments and
attacks on the system. The DarpaBrowser development team actively and
enthusiastically assisted the review team in every way possible to
maximize the number of security vulnerabilities that were identified. 

The results can only be described as a significant success. We had
anticipated that, during the security review, some number of vulnerabilities
would be identified. We had anticipated that the bulk of these would be
easy to fix. We had anticipated that a few of those vulnerabilities might be
too difficult to fix in the time allotted for this single research effort, since
the technology being used is still in a pre-production state. But more
important than any of this, we had also predicted that no vulnerabilities
would be found that could not be fixed straightforwardly inside the
capability security paradigm. All these expectations, including the last one,
were met. As stated by the external security review team in their
concluding remarks on the DarpaBrowser:

We wish to emphasize that the web browser exercise
was a very difficult problem. It is at or beyond the state
of the art in security, and solving it seems to require
invention of new technology. If anything, the exercise
seems to have been designed to answer the question:
Where are the borders of what is achievable? The EE
capability architecture seems to be a promising way to
stretch those borders beyond what was previously
achievable, by making it easier to build security
boundaries between mutually distrusting software
components. In this sense, the experiment seems to be
a real success. Many open questions remain, but we feel
that the EE capability architecture is a promising
direction in computer security research and we hope it
receives further attention.

One of the by-products of this research, as a consequence of building the
infrastructure needed to support the experiment, was the construction of a
rudimentary prototype of a capability secure desktop, CapDesk. CapDesk
and the DarpaBrowser with its malign renderer provide a vivid
demonstration that the desktop computer can be made invulnerable to
conventional computer viruses and trojan horses without sacrificing either
usability or functionality.

These results could have tremendous consequences. They give us at last a
real hope that our nation--our industrial base, our military, and even our
grandmothers and children--can reach a level of technology that allows
them to use computers with minimal danger from either the thirteen year
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old script kiddie or the professional cracker. The Capability Secure Client
points the way to a still-distant but now-possible future in which
cyberterror appears only in Tom Clancy novels.

For a full decade, year after year, computer attackers have raced ever
farther ahead of computer defenders. It is only human for us to conclude, if
a problem has grown consistently worse for such a long period of time,
that the problem is insoluble, and that the problem will plague our distant
descendants a thousand years from now. But it is not true. We already
know--and this project has begun to demonstrate--that capability security
can turn this tide decisively in favor of the defender. The largest question
remaining is, do we care enough to try.

We end this executive summary with a picture we believe to be more
eloquent than any words. On the right is the world of computer security as
it exists today. On the left is the world of computer security as it can be.
You, the reader of this document, are now on the front line in the making of
the choice between these two worlds.
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The Malicious Renderer running in two different environments. On the left, the renderer is
running under capability confinement. It is unable to achieve any compromise of the
security either of the browser that uses the renderer, or the underlying operating system.
On the right, the exact same renderer is running unconfined, with all the authorities any
executing module receives by default under either Unix or WinNT (referred to as "Winix"
here). With Winix authorities, the renderer takes full control of the user's computing
resources and data.
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DarpaBrowser Capability Security Experiment

Introduction

Goals

A precise description of the goals can be found in the Project Plan in the
Appendix. The driving motivation was to show that capability based
security can achieve significant security goals beyond the reach of
conventional security paradigms.

What is wrong with conventional security paradigms? They all impose
security at too coarse a granularity to engage the problem. This failure is
acutely visible when considering the issues explored in this research, in
which we must protect a web browser and its underlying operating
environment from the browser's possibly-malicious renderer. Even though
the browser must grant the renderer enough authority to write on a part of
the browser's own window, the browser absolutely must not allow the
renderer to write beyond those bounds. This is a classic situation in which
POLA is required. Let us discuss the POLA concept, and then look at a
number of conventional security technologies to see how they fail to
implement POLA at all, much less assist in this sophisticated context.

Principle of Least Authority (POLA)

The shield at the heart of capability confinement is the Principle of Least
Authority, or POLA (introduced in [Saltzer75] as "The Principle of Least
Privilege"). The POLA principle is thousands of years old, and quite intuitive:
never give a person (or a computing object) more authority than it needs to do its
job. When you walk into a QuickMart for a gallon of milk, do you hand the clerk
your wallet and say, "take what you need, give me the rest back"? Of course not.
When you hand the clerk exact change, you are following the POLA principle.
When you hand someone the valet key for your car, rather than the normal key,
you are again following POLA. Our computers are ludicrously unable to enforce
POLA. When you launch any application--be it a $5000 version of AutoCAD fresh
from the box or the Christmas Elf Bowling game downloaded from an unknown
site on the Web--that application is immediately and automatically endowed with
all the authority you yourself hold. Such applications can plant trojans as part of
your startup profile, read all your email, transmit themselves to everyone in your
address book using your name, and can connect via TCP/IP to their remote
masters for further instruction. This is, candidly, madness. It is no wonder that,
with this as an operating principle so fundamental no one even dares think of
alternatives, cyberattack seems intractably difficult to prevent.
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Failures Of Traditional Security Technologies

• Firewalls: Firewalls are inherently unable to implement POLA. They are
perimeter security systems only (though the perimeter may be applied to a single
computer). Once an infection has breached the perimeter, all the materials and
machines within the perimeter are immediately open to convenient assault. A
firewall cannot discriminate trust boundaries between separate applications;
indeed, it doesn't even know there are different applications, much less different
modules inside those applications. To the firewall, all the applications are one big
happy family. 

• Access Control Lists: Access Control Lists (ACLs) as provided by Unix and
WinNT are also inherently unable to implement POLA. It is possible, with
sufficient system admin convolutions, to cast certain applications into their own
private user spaces (web servers are frequently treated as separate users), but
this is far too complicated for the user of a word processor. It fundamentally can't
discriminate between applications within a user's space, much less discriminate
components inside an application (such as document-embedded viruses written
with an embedded programming language like Visual Basic for Applications, or
an Active-X control or Netscape plug-in for a Web Browser). 

• Certificates: Of all the currently popular proposals for securing computers,
certificates that authenticate the authors of the software are most pernicious and
dangerous. Certificates do not protect you from cyberviruses embedded in the
software. Rather, they lull you into a false sense of security that encourages you
to go ahead and grant inappropriate authority to software that is still not
trustworthy. In the year 2000, an employee at Microsoft embedded a Trojan
horse into one of the DLLs in Microsoft FrontPage. Microsoft asserted that they
had had nothing to do with it, and started a search for the employee who had
engaged in this unauthorized attack. What difference does it make whether
Microsoft had anything to do with it or not? Microsoft authenticated it. The user's
computer was just as subverted, regardless of who put it there. The real problem
is, once again, the absence of POLA. FrontPage didn't need the authority to
rewrite the operating system and install Trojan horses and should not have had
such authority. The presence of a Trojan horse in FrontPage would, in any
sensible POLA-based system, be irrelevant, because the attack would be
impotent. There are uses for certificates in a POLA-based world, but this is not
one of them. 

• Java Security Manager: Of the collection of current security technologies, the
Java Security Manager comes closest to being useful. The Java Security
Manager wraps a single application, not a user account (like ACLs) or a system
of computers (like firewalls). By using sufficiently cunning acts of software
sleight-of-hand, one can even place different software modules inside different
trust realms (though ubiquitously moving individual software objects into
individual trust domains and handing out POLA authorities at that fine-grain level
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of detail would be too unwieldy, and too complex, to have understandable
security properties). However, even the Java Security Manager does not begin to
implement POLA. There are a handful of extremely powerful authorities that the
Manager is able to selectively deny to the application. But authorities that are not
self-evidently sledge-hammers, such as the authority to navigate around an
entire window once you've gotten access to any individual panel, are far too
subtle for the Java Security Manager to grasp. A malicious renderer could, with
only a couple simple lines of code, take control of the browser's entire user
interface, and gleefully spoof the user again and again, faster than the eye can
blink. 

As we see, none of these technologies is able to seriously come to grips with the
crucial needs of POLA either separately or in combination. This is why computer
security is in such a ghastly state of disrepair today. The answer is capabilities.

Capability Security

Capabilities are a natural and intuitive technology for implementing POLA.
Capabilities can be thought of as keys in the physical sense; if you hand
someone a key, you are in a single act designating both the object for which
authority is being conveyed (the object that has the lock), and the authority itself
(the ability to open the lock). Capabilities, like idealized physical keys, can only
be gotten from someone who already has the key (i.e., the shape of the key
cannot be successfully guessed, and a lockpick cannot figure it out either).
Authority is delegated by handing someone a copy of the key. Revocation of a
capability is comparable to changing the lock (though changing software locks is
much easier than changing hardware). One might think that making individual
keys for every object that could possibly convey authority in a computer program
would be unwieldy. But in practice, since the authority is being conveyed by the
reference (designation) to the object itself, and since you have to hand out the
reference anyway for someone to use the object, it turns out to be quite simple.
In most circumstances the conveyance of authority with the reference makes the
authority transfer invisible, and "free". Finally, because capabilities naturally
ubiquitously implement POLA, an emergent property of capability-confined
software is defense-in-depth: acquisition of one capability does not in general
open up a set of exploits through which additional capabilities can be acquired.
The implementation of capabilities that is today closest to production deployment
is the EE Programming Platform.

EE Programming Platform

The EE Programming Platform, at the heart of which lies the EE programming
language, is specifically designed to support capability security in both local and
distributed contexts. EE is an open source system [Raymond99], and the draft
book EE in a Walnut [Stiegler00] is the principal guide for practical EE programming.
EE is still a work in progress. Indeed, the bulk of the work done to complete the
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DarpaBrowser project was fleshing out parts of the EE architecture needed by the
browser environment. But operational software has been written and deployed
with EE. EE is not yet feature complete, but the features it does have are robust.

Preparation for the Experiment

Building CapDesk

We started with the eDesk point-and-click, capability secure distributed file
manager that was the first serious EE program used for production operations. We
augmented eDesk with a rudimentary capability-confining launching system
adequate for launching basic document-processing applications and a basic Web
Browser. Adding the launching system turned eDesk into a rudimentary capability
secure desktop, i.e., CapDesk.

Key components of the launching system include

• Point-and-click installation module that negotiates endowments on the behalf of
the confined application. An endowment is an authority automatically granted to
the application at launch time. Basic document processors only need user-
agreed upon name and icon for their windows, used to prevent window forgery.
Web browsers work most simply if endowed with network protocols, specifically,
in this case, HTTP protocol.

• Powerbox module that manages authority grant and revocation on behalf of a
confined application. The powerbox launches the app, conveys the authorities
endowed at installation, and negotiates with the user on the application's behalf
for additional authorities during execution.
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CapDesk operating as a capability secure, point-and-click, distributed file manager. In this
example, CapDesk has one window open on a Windows computer, and another window open on
a Linux computer. The user can copy/paste files and folders back and forth between the file
systems, and directly run capability confined applications (such as CapEdit) on files on any part
of a file system to which CapDesk has been granted a capability.

Building the EE Language Machine

With CapDesk expanded to be able to launch capability confined applications, it
became possible to build an EE Language Machine (EELM). An EELM is the world's
first general-purpose point-and-click computing platform that is capability-secure
and invulnerable to traditional computer viruses and trojan horses. It is built by
running a CapDesk on top of a Linux core; the CapDesk effectively seals off the
underlying layers of software (Linux, Java, and EE Language, which together with
CapDesk comprise the Trusted Computing Base (TCB) which has full authority
over the system) from the applications that are running (only capability confined
applications can be launched from CapDesk, so only capability confined apps
can run).
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Architecture of the EE Language Machine. A Linux kernel launches a Java virtual machine, which
launches an EE Language Interpreter, which launches a CapDesk. CapDesk seals off the
underlying non-capability elements of the Trusted Computing Base from capability-confined
applications launched from CapDesk. In this sample scenario, a hypothetical capability-confined
mail tool is running, and the user has double-clicked on an email attachment. The attachment in
run in its own unique trust/authority realm, making it unable to engage in the usual practices of
computer viruses, i.e., reading the mail address file and connecting to the Internet to send copies
of itself to the user's friends.

Building the DarpaBrowser

A web browser needs surprisingly few authorities considering the amount
of value it supplies to its users. A simple browser needs little more than the
authority to talk HTTP protocol. Since the DarpaBrowser was itself
designed as a capability confined application, this meant that the browser
never had very much authority available for the renderer to steal if the
renderer somehow managed to totally subvert the browser. As later
observed by the security review team in their report,

10



Combex/Focused Research Topic 5/BAA-00-06-SNK 11/18/2002

Withholding capabilities from the CapBrower is doing it
a favor: reducing the powers of the CapBrower means
that the CapBrowser cannot accidentally pass on those
powers to the renderer, even if there are bugs in the
implementation of the CapBrowser.  

One of the security goals was to prevent the renderer from displaying any
page other than the current page specified by the browser. While capability
confinement was trivially able to prevent the browser from going out and
getting URLs of its own choice, there was one avenue of page acquisition
that required slightly more sophistication to turn off: if the renderer were
allowed to have a memory, it could show information from a previously-
displayed page instead of the new one. Therefore, the renderer had to be
made "memoryless".

With capabilities as embodied in EE, one straightforward way of achieving
memorylessness is to throw the renderer away and create a new one each
time the user moves to a new page. This was the strategy used in the
DarpaBrowser.
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An EELM with CapDesk and DarpaBrowser. The DarpaBrowser in this image is running the
Benign Renderer, based on the JEditorPane widget of the Java Swing Library; this widget
directly renders HTML.

Building the Renderers

According to the proposal originally presented for the DarpaBrowser, only two
renderers would be built: a benign renderer, and a malicious renderer. As the
project proceeded, it became clear that these were inadequate to test all the
principles we wished to assess. A "text renderer" was built in time for the
experiment. This renderer simply presents the text of the page on the screen,
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creating a "source view". This renderer was able to present any HTML document,
no matter how badly the HTML has been written by the page author.

In the aftermath of the review, an additional renderer was built, the
CapTreeMemless renderer, as described later.

Taming Swing/AWT

A key part of the effort of preparing for the experiment was taming the Java API,
in particular, taming the AWT and Swing user interface toolkits. The act of taming
involves applying a thin surface to a non-capability API that drives interactions
into a capability-disciplined model. The Java API is not designed for capability
security, yet contains an enormous amount of valuable functionality that cannot
be easily rewritten from scratch. It turned out that the taming approach was in
general adequate to make this API useable. Frequently, taming involves nothing
more than suppressing "convenience" methods, i.e., methods that convey
authority that programmers already have. Let us give a simple and a complex
example:

As a simple example, given any Swing user interface widget, one can recursively
invoke "getParent" on the widget and its ancestors until a handle on the entire
window frame is acquired. A malicious renderer could defeat, in a half dozen
lines of code, the explicit goal of ensuring that the URL field and the page being
displayed were in sync. Therefore the getParent method on the Component class
must be suppressed to follow capability discipline.

As a complex example, the most ridiculous anti-capability subsystem we
encountered in Swing was the Keymap architecture for JTextComponents. All
JTextComponents in a java virtual machine share a single global root Keymap.
Programmers can create their own local keymaps and add them as descendents
from the global root Keymap, creating a tree of keymaps; the children receive
and process keystrokes first, and can discard the keystroke before it reaches its
parents. The part of this that is exquisitely awful is that it is possible to edit the
global root keymap. Malicious software can trivially vandalize keystroke
interpretation for the entire system. Even more maliciously, objects can
eavesdrop on every keystroke, including every password and every confidential
sentence that is typed by the user. This is not merely a violation of security
confinement. This is a violation of the simplest precepts of object-oriented
modularity. Not only is it trivially easy for malicious code to attack the system, it is
trivially easy for the conscientious programmer to destroy the system by
accident. Indeed, the way the DarpaBrowser team first identified this particular
security vulnerability in Swing (long before initiating the actual taming process)
was by accidentally destroying the keymap for the eBrowser software
development environment.

To solve this problem, the methods that allowed the root keymap to be accessed
had to be suppressed, and since child keymaps could not be integrated into the
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system without designating the parent, new constructors had to be created for
keymaps that would, behind-the-scenes, attach the keymap to the root keymap if
no other parent were specified. While the actual amount of code needed to tame
this subsystem was small, more effort was needed to design the taming
mechanism than would have been required by the JavaSoft Swing developers to
create a minimally sensible object-oriented design in the first place.

Fortunately, the bulk of Swing is well-designed from an object-oriented
perspective, which is what made it possible for the taming strategy to work well.
Had the keymap subsystem not been an aberration, rewriting the user interface
toolkit from lower-level primitives would have been more cost-effective despite
the enormous costs such an undertaking would have entailed.

The AWT/Swing API is an enormous bundle of classes and methods. A
substantial portion of the entire research effort went into this taming effort,
including writing two versions of the CapAnalyzer (see picture) tool to support the
human tamer in his efforts. The approach taken in this first attempt at taming was
to be conservative, i.e., to shut off everything that might have a security risk
associated with it, and enable only things that were well understood.

Version 1 of the EE Capability Analyzer. The human analyst is walked through all the classes in a
Java package, given the Javadoc from the API for that class, and allowed to individually
suppress methods, and mark the class "safe" (i.e., it confers no authority), or "unsafe" (and must
be explicitly granted to a confined module from another module that has the authority).
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Limitations On the Approach

Before plunging into the experiment and its results, we should carefully note the
limitations on the approach taken in the DarpaBrowser effort.

• Goal Limitations: As explicitly noted in the original proposal, Denial of
Service attacks were out of scope, as were information leaks. The goal was
to prevent the renderer from gaining authorities, such as the power to reset
the clock or delete files. While as a practical matter the most dangerous
kinds of information leaks were also prevented by capability confinement,
some types of leaks, such as covert channels, were not even challenged,
much less prevented. For more information about the details about the
goals, see the Project Plan in the Appendix. 

• EELM Limitations: The EELM is the world's first capability secure computing
platform with a point-and-click user interface. It is a remarkable by-product
of building the DarpaBrowser. We would be remiss not to note, however,
that it has significant disadvantages compared to a true capability-secure
operating system. Notably, the TCB is extremely large. The size of the TCB
attracts risk of embodying security vulnerabilities. Furthermore, the
architectural complexity of this TCB probably makes it too ungainly ever to pass
a full security audit. Despite these limitations, however, the EELM still represents a
substantial leap forward in the integration of security, flexibility, and usability. 

• Benign Renderer Limitations: During the last days leading up to the
experiment, it became clear that the benign renderer in particular was a
weak experimental platform. This renderer was built, as specified in the
proposal, using the Swing HTML widget. This gave us a professional-
looking rendering at extremely little cost. One disappointment was that this
HTML widget was extremely fickle about the HTML it would accept; as a
consequence, very few pages on the Web will actually render through it. 

However, for our experimental purposes, this was not the major failing.
More serious was that this widget used authority conveyed to it as a part of
the Trusted Computing Base for much of its interaction with web pages.
Consequently, the benign renderer exercised almost none of the authority
confinement elements of the Browser: being a TCB HTML widget, it would
just go out to the Web and get its own images based on the textual string
of the URL, for example, without having to negotiate with the browser for
actual authority. This was the reason we built the text renderer, as a proof
that "real" rendering could be done without using TCB powers.
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The Experiment

A snapshot was taken of the EE/CapDesk system to use as a baseline for the
security review. This baseline version of the system can be found at
http://www.erights.org/download/0-8-12/index.html

The reviewers were given documentation on the system, goals, and
infrastructure well in advance of the actual review, so that they could arrive
with a reasonable familiarity and start fast.

For five consecutive days, the review team and the development team ate, slept,
and drank DarpaBrowser security. On the first day the overall architecture was
reviewed, and the schedule was made out for all the successive days of the
review. The schedule ensured that no pieces of the system with signficant
security sensitivities were excluded. Actual selection of what to review, how to
review it, and how long to take reviewing it, were strictly driven by the reviewers;
the development team assisted in every way possible, but they were only there to
assist. Everyone took notes, and those notes were merged on the final day.

After the week of in-depth scrutiny, the review team wrote the security report that
can be found in the Appendix.

Results

The written security review can be read in the Appendix. Anyone interested in the
details of the results is encouraged to read the full report. To be extremely brief,
the results were in line with our expectations: For the security goals specified in
the project plan (which included goals from the original DARPA solicitation and
our original proposal), we did find a number of security vulnerabilities (twenty-one
in total) in our first implementation of the DarpaBrowser. Most of these
vulnerabilities were simple programming errors that were easy to correct. Two of
them have proven to be too hard/too unimportant/too irrelevant to the future
development path of the E E platform to fix within the limits of this contract; these
two are described in detail the Post Experiment Development section below.
However, not even the two unfixed vulnerabilities expose flaws in the
fundamental capability security architecture. All can be straightforwardly repaired
once the capability paradigm is embraced.

The crucial outcome of the experiment was of course the lessons learned, which
are detailed in the next section. But for completeness' sake, we mention here an
issue found in the memoryless version of the DarpaBrowser. By toggling the
"Allow Memory" box on and off while browsing the Web, it becomes clear that the
browser suffers a significant performance penalty when the renderer is made
memoryless by creating a new renderer instance each time a new page is
loaded. The performance analysis tools available with E E at this time are too crude
for us to state a conclusive explanation for this. We hypothesize that the problem
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lies in the way Java Swing discards and replaces subpanels. Regardless of
whether the problem lies in Swing or in the current implementation of EE, however,
there is no reason that this should be an expensive operation, i.e., there is
nothing about the capability paradigm that imposes a significant performance
penalty for discarding objects, either within or across a trust boundary. We
therefore do not say anything more about this discovery in this report, though it is
another reason why we are eager to move from Swing to SWT, as described
later.

Lessons Learned

General Truths

• Acquisition of Dangerous/Inappropriate Authority Can Be Prevented by
Capability Based Security. All the vulnerabilities found in the experiment can be
easily remedied within the capability architecture. Indeed, it can be argued that
these vulnerabilities can only be remedied in the capability architecture, as
suggested by the second general truth: 

• Leaving the capability paradigm invites grave security risks. One of the two
significant sources of vulnerabilities in the DarpaBrowser itself was the code for
analyzing HTML. HTML is a simple text format that embodies implicit authority
demands (for more detail, see the section below about HTML and the Confused
Deputy problem). As a consequence, to deal with HTML--or to deal with any of
the many other non-capability protocols now in use on the Web--you must depart
from the capability paradigm long enough to process the protocol into a capability
form. Through the DarpaBrowser investigation, we have learned just how
important it is to enforce the following rules: 

o When you must leave the capability paradigm, get back as quickly
(with as few lines of code) as possible.

o Use the most rigorous techniques available for managing non-
capability representations of authority.

o Model the other forms of authority as capabilities whenever possible.

In the DarpaBrowser, the strings embedded in the HTML that represent URLs
were initially identified by using string matching. As discussed at length in the
security review, this proved far too vulnerable. In the end an HTML parser
was substituted for the string matcher, essentially eliminating this issue.

• Taming a large API takes substantial resources. The amount of time and
effort required to tame Java AWT/Swing was significantly underestimated. Even
taking the conservative approach described earlier (to shut off parts of the API
that were not well understood), the speed with which taming was performed was
too great, introducing vulnerabilities. The security review team concluded that
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taming was the most significant overall risk to the EE capability implementation
strategy, and we concur. A whole new tool should be written to support taming,
and considerably greater resources must be committed to complete the taming
process in such a fashion that the security community can feel confident in the
result. A draft specification for the taming support tool can be found in the
Appendix. 

Capability confinement can significantly improve the cost/benefit ratio of security
reviews. By following the flow of authority down capability references, even
without any tool except the human eye, one can quickly identify large sections of
code that cannot possibly have dangerous authority and do not need security
review. The ability to cut off the review at the point where capabilities ceased
flowing appeared repeatedly in the course of the experiment as a substantial time
savings. This strength of capabilities was highlighted by the use of the powerbox
pattern discussed below, though this was far from the only place in which the
technique played a powerful role. 

Significant opportunities for research in capability-based security patterns still
exist. Capability based security has been known to the computer security field for
decades as chronicled in [Levy84]; an update of Levy’s chronology of capability
milestones can be found in the Appendices. However, a relatively small
percentage of the resources spent in computer security have been invested in
the capability paradigm. As a consequence, within the capability field lie rich
veins of security innovations still waiting to be mined. 

Capability-Based Secure Programming is, with a few key exceptions, little
different from Object-Oriented Programming. As suggested by the
JTextComponent Keymap example described in the Taming section earlier,
capability secure designs have a great deal in common with clean, modular
object-oriented designs. Often a clean modular design is all one needs to secure
a subsystem; the same minimization of object reference that reduces risk of
accident and simplifies maintenance also implements much of POLA. Ironically,
one of the differences between objects and capabilities is that, for capabilities,
one must be more rigorous about applying object-oriented modularity: while the
non-security-aware programmer can trade off modularity against other goals
(even if the other goals are bad, as exemplified by the keymap), the capability-
secure programmer needs to enforce modularity discipline pervasively. This has
a number of specific consequences, described in detail in the Specific Insights
section below. With those exceptions, however, the object oriented programmer
will find little difference between object-oriented programming and capability-
based programming when using a capability-based language such as EE. 

Within a capability-confined realm, even horrifically poor, security-oblivious
programming can do little or no harm. This is one of the lessons of the
confinement of the malicious renderer. Even if every bit of the architecture and
implementation of the malicious renderer abandoned both capability and object-
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oriented design, little harm could come of it. The worst it could do is render the
HTML poorly, i.e., it could be broken. It could not, however, harm the
DarpaBrowser or the underlying system. The designer of the interface from the
browser to the renderer needs to have skill as a capability-oriented programmer,
but programmers without any special training can write the bulk of the code in a
typical (secure) system.

Specific Insights

• The Powerbox Pattern is a significant new invention. The powerbox mediates
authority grants for the confined module on behalf of the powerbox owner. If the
module requests an authority with which the module has been endowed at
creation, the authority is simply granted. If the module needs a new authority
during operations, the powerbox negotiates with its owner for such authority. If
the owner decides to change authorities during operations (either grants or
revocations), the powerbox fulfills these changes.

The Powerbox security pattern proved to be a powerful ingredient in leveraging
the security review resources for maximum productivity. It effectively collects the
security issues at the boundary between a pair of trust realms into a small body
of code. Consequently, the bulk of the code inside a single trust realm does not
have to be reviewed for security issues. The vast majority of the CapDesk code
went un-reviewed, yet we have reasonable confidence that no vulnerabilities
were missed because of this decision.

This pattern was invented in the course of the DarpaBrowser research. We first
developed the pattern for the CapDesk Powerbox, from which the pattern gets its
name. The CapDesk Powerbox is the software module that mediates the
granting of authorities to a capability confined application from the user. This
pattern was reused (though incorrectly, as discussed in the General Truths
earlier), at the interface between the DarpaBrowser and the renderer (embodied
as the renderPGranter component). By following the now-well-understood pattern
henceforth, future developers will be able to build more secure systems at less
cost and with greater reliability. The Powerbox pattern is elaborated in the
Appendix.

• HTML embodies the classic Confused Deputy security dilemma. HTML uses
text to designate a page to be accessed without actually conveying the authority
to access that page. Both the HREF attribute and the IMG tag are examples of
places where the HTML text assumes the browser will use its own authority to
fulfill the intent, not of the browser owner, but of the HTML author. This is the
classic characterization of the Confused Deputy problem, which occurs when
designation is separated from authority [Hardy88]. As a simple example, suppose
a page from outside your firewall specifies a URL that is interpreted, inside your
firewall, as connoting a particular page available inside the firewall. The page
author beyond the wall almost certainly does not have authority to reach this
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page, but the browser does. In this circumstance, the HTML from that outside
page, possibly written by an adversary and in collaboration with the malicious
renderer, can use the browser's authority on its own behalf. This did not, as it
turned out, violate any of the security goals of the project, but it is a
disappointment. 

Encountering the Confused Deputy problem was the proximate cause for Norm
Hardy, the founder of modern capability thinking, to turn to capabilities in the first
place. There is no solution except to totally embrace capabilities, by ubiquitously
using capabilities not only in the browser, but in the HTML language itself.

It is possible to build a capability-oriented protocol derived from HTML that has
many of the desireable properties of HTML, but which enables proper security
enforcement. However, such a protocol would not be backwards-compatible with
HTML (though note that one can layer a capability protocol on top of HTML
[Close99]). Since this project explicitly called for working with HTML as it exists
now, this line of research stopped when the problem had been identified.

• Event-loop models of concurrency have a synergistic relationship with
capabilities for ensuring security. One of the more common causes of
vulnerability is the Time Of Check To Time Of Use (TOCTOU) hole. In a
TOCTOU vulnerability, a value is checked to confirm that it is valid, and then
before it is used the malicious client changes it. TOCTOU vulnerabilities are
exquisitely difficult to detect and fix in systems that use threads as part of their
concurrency model, since the value change can happen in between the
execution of individual lines of code. The EE promise-based architecture, which
puts a programmer-friendly face on event loops, guarantees that this path to
sneaking in a change cannot occur. All the actions in a single event execute as
an atomic operation. This greatly simplifies TOCTOU analysis, detection, and
correction. 

• Drag/drop authority must be explicitly granted. Authority for drag/drop must
be explicitly conferred as a launch-time grant, not as a safe non-authority
conveying operation. At first glance, it would appear that being a drag source or a
drop target is not authority conveying: after all, the user, in performing a drag and
a drop, is engaging in the kind of explicit action that can be used in the capability
paradigm to identify and convey appropriate authority. However, there is a subtle
problem with automatically granting the authority to be a drag source or a drop
target to all comers. If components from different trust realms are granted
authority inside a single window frame (as in the DarpaBrowser), the differently
trusted component can engage in spoofing: it can trick the user into believing it is
a part of the main application, not a separate application that must be treated
differently. For example, in the DarpaBrowser, if the renderer could designate
itself as a drop target, a user drop of a file on the renderer's panel would enable
the renderer to present the data in that file without informing the browser. At that
point the browser's URL field would be out of sync with the page being displayed.
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This would explicitly breach the security goals of the project. It is fortunate for the
overall EE effort that the DarpaBrowser exercise was the context for making these
first authority-distinguishing decisions, otherwise the EE platform might well have
had to make an upwards-compatibility break to close this vulnerability after it had
been more extensively deployed. 

• Explicit Differences between Capability-Oriented Programming and Object-
Oriented Programming include: 

o No static (global) public mutable state is allowed. The EE
programming language enforces this, since there are no static public
mutables. This has a minor but real impact on system design: an
object such as the java.lang.System.out object cannot be created. 

o Object instantiation sometimes requires more steps. In a capability
system enforcing POLA, there tend to be more levels of instantiation
for an object: the work normally done by a single powerful constructor
will, as a part of POLA, often be broken into a series of partial
constructors as the final user of the constructed object gets just
enough power to perform local customizations of the object. An explicit
recognition of this multiple-level instantiation is the Author pattern
followed by many emakers (EE library packages). An EE constructor will
often run in the scope of an Authorizer that is first created and granted
the needed authorities; then the constructor itself can be handed to
less-trusted objects without having to give the less-trusted object the
authorities needed to make the constructor. The most complex current
example of this pattern is the FrameMakerMakerAuthor in the
CapDesk Powerbox. An individual Caplet is granted an individual
frameMaker for making windows. To create the frameMaker, there is
first an authorization step in which authority to create JFrames (the
underlying Swing windows) is granted. Then an intermediate Maker
step customizes the frameMaker with an unalterable caplet pet icon
and pet name so that the caplet cannot use its power to make frames
to spoof the user. 

The Authorization step, and other intermediate levels of instantiation,
can be disconcerting for the first-time capability programmer with an
object-oriented background. It is, however, a simple extension of
standard object-oriented practice. Indeed, between the start of this
project and its completion we observed that the use of inner classes in
Java has become increasingly ubiquitous in the example code from
major vendors such as Sun and IBM. For the Java programmer who
has become comfortable with these nested classes, the leap to
multiple levels of instantiation is not even a speed bump, but more a
pebble on the road. Meanwhile, the benefits of multi-layer POLA-
oriented instantiation make it possible to be extremely confident, during
debugging, that the majority of the library packages in a system could
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not have caused a surprising authority-requiring problem: one can see
at a glance that the package did not have the authority, and move on
to the next candidate for inspection.

o Facets and Forwarders are common patterns and must be easily
supported. In capability programming, on the boundaries between
trust realms, facets and revokable transparent forwarders are often
used to grant limited access to powerful objects. The frameMaker
above is an example, it is a facet on the Swing JFrame that does not
allow the icon or the title prefix to be changed. Fortunately, the EE
programming language makes the construction of facets and
forwarders painless. This implements the following user interface rule
that is older than programming, and indeed, older than the printed
word: "If you want someone to do something the right way, make the
right way the easy way." Forwarders and facets have been made very
easy. In EE, the code for a general-purpose constructor for revokable
forwarders can be written in as little as six lines of code: 

def makeRevokableForwarderPair(obj) :any {
  var innerObj := obj
  def forwarder {match [verb, args] {EE call(innerObj, verb, args)}}
  def revoker {to revoke() {innerObj := null}}
  [revoker, forwarder]
}

o Encapsulation must be strictly enforced. As noted earlier,
modularity discipline must be followed pervasively. It cannot be broken
for convenience. 

o In capability style, there can be no unchecked preconditions on
the client in a lesser trust realm. If a client does not fulfill the
preconditions in a contract with an interface, and if the implementation
of the interface does not check and detect this failure, the results are
unpredictable. Such unpredictability is the enemy of security, and
cannot be tolerated. In the context of EE, a large part of this principle
can be implemented through the following EE-specific rule: 

o Rigorous guards should be imposed on arguments received
across a trust boundary. Due to the nature of EE semantics, a
malicious component can send an object across the trust boundary
which changes its nature as it is used, essentially spoofing the
recipient. EE has the most flexible and powerful dynamic type checking
system yet devised for a programming language (using guards).
However, to support rapid prototyping, these guards are optional in EE.
Therefore a best practice for EE objects on the trust boundary is to
impose the most restrictive guards possible on every argument
received. Because of the DarpaBrowser experience, an experimental
feature has been implemented for EE that would, on a module-by-
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module basis, allow the developer to require guards on all variables in
the module. A powerbox module, for example, should probably operate
with this extra requirement imposed upon it.

Post-Experiment Developments

Closing Vulnerabilities

The major effort after the security review was to clean up as many of the security
vulnerabilities identified in the review as possible for the final deliverable. The
single most time consuming part of that effort was to alter the interface between
the DarpaBrowser and its renderer to use a parse tree with embedded
capabilities for describing the page to the renderer, rather than using text strings
and raw URLs.

The DarpaBrowserMemless was the result of that effort. It uses parse trees
rather than string matching, and embeds the correct capabilities in the parse tree
handed to the renderer rather than playing a "guessing game" by trying to
validate the url strings sent back to it from the renderer.

In addition to upgrading the benign and evil renderers to work with the new
browser, a new renderer was built, the "capTreeMemless" renderer. This
renderer addressed a desire expressed by the security review team, which was
that at least one render that did not have special TCB authority be created that
demonstrated that authority conveyance for items other than links, in particular
images, operated correctly inside the capability paradigm.
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CapTreeMemLess renderer at work. While not visually attractive, it does demonstrate the use of
an HTML parse tree with embedded capabilities for rendering images and enabling links.

The status of all the vulnerabilities identified in the security review can be tracked
through links embedded in the HTML version of the review found at
http://www.combex.com/papers/darpa-review/index.html. These links tie
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directly into the bug tracking system for the E E platform. As can be seen there,
nineteen of the twenty-one vulnerabilities have been closed. The two
vulnerabilities left unaddressed, and the reasons for leaving them unrepaired,
are:

• 125505 Suppress show while allowing frame display:  An application with
minimal window-creation authority can, by creating a window, steal the focus
from the currently active application, and possibly receive sensitive data being
typed by the user before the user realizes that he is no longer working with the
intended window. This vulnerability does not impact the DarpaBrowser's ability to
confine the renderer (the render does not have window creation authority), but it
is a true vulnerability that should be repaired. However, due to the way in which
Swing bundles the window opening and window activation operations, it is not
trivial to fix: the JFrame uses a single operation, show() to open the window,
bring it to the front, and steal the focus. Simply suppressing the show() method is
not one of the choices, since it is a required operation. We would still proceed to
fix this problem (by building an experimental subclass of JFrame and re-
implementing as much as it takes to unbundle the opening of the window from
the stealing of the focus) if it were not for an additional development that
occurred late in the course of the project: IBM brought out an alternative
windowing kit, SWT, that can replace Swing and appears to be superior in many
ways to Swing. SWT is described later in this report. Since we now tentatively
plan to replace Swing with SWT for EE programming, a major undertaking to build
a better JFrame would be a waste of effort. 

• 125503 Prevent backtrace revealing private data:  A thrown exception could in
principle carry sensitive information across a trust boundary. Once again, this
does not effect the DarpaBrowser and its goals: the renderer is never in a
position to receive sensitive data that it does not have more straightforward
access to anyway (i.e., the browser may be used to read a sensitive page, in
which case the renderer gets it directly anyway, for rendering). Furthermore, the
description of this vulnerability as written in the security review has been found to
be erroneous: the bug is both much less dangerous (it cannot leak authority) and
much more difficult to fix than had been understood at the time of the review. As
a consequence, we have allocated resources to more urgent requirements at this
time. 

Development of Granma's Rules of POLA

As a consequence of the demonstrability of the CapDesk/DarpaBrowser system,
we have been able to present capability security principles to large audiences of
people who previously would have found the topic too academic to appreciate.
As people grasped that security really was possible, a few retreated into
complaints that, except in very simple examples (like the current
CapDesk/DarpaBrowser example), the management of the security features of
the system would be too complicated for "normal" people to use. Fortunately,
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developing the CapDesk system gave us sufficient insight into the "normal
security needs" for the "normal user", that we were able to develop a simple set
of guidelines with the following features:

• Can be quickly taught to people of only modest computer skill,

• Allows people to get their work done easily and without barriers,

• Nevertheless guarantees that effective security (for "normal" needs) is
maintained.

Having been given a serious review by the E E language community in the EE
language discussion group, these guidelines are now known as Granma's Rules
of POLA. Their description can be found in the Appendix. Much research remains
to be done in the area of making capability security user friendly, but this
document points in a promising direction.

Introduction of SWT

In the closing months of this contract, a new technology came to our attention.
IBM has released an alternative to JavaSoft's AWT/Swing user interface toolkit,
the Standard Widget Kit (SWT). This widget kit has already been used for a very
sophisticated user-interface application, the Eclipse software development
environment. SWT has the following advantages over AWT/Swing:

• SWT is much smaller than AWT/Swing. This has tremendous ramifications for
the taming process, which was highlighted in the security review as the single
greatest risk in the EE platform. Reducing the size of the toolkit has a more-than-
linear and critical impact on both feasibility and risk. 

• SWT engages the native widget kit at a higher level of abstraction than does
Swing. As a consequence, applications written in Java/SWT really do look and
feel exactly like any other application written specifically for the platform, since it
is usually using the native widgets. The difference in attractiveness and comfort
for the user is, all by itself, a compelling reason to switch. Java with SWT is an
enormous step forward in the land of "Write once, run anywhere". 

• SWT uses a true open source license, unlike the Swing SCSL license. This has
two important advantages: if it turns out during taming that simple taming is
complicated and problem-laden (as with the JFrame grab-focus-on-opening
behavior in Swing, described earlier), we have the option of simply modifying the
problematic class rather than attempting a poor taming effort. The second
advantage is that the license allows us to compile SWT into native and dot-net
forms, allowing us to use a single standard toolkit across all three of the EE
implementations requested by the EE user base: Java, native binary, and dot-net.
This too would be, all by itself, a compelling reason to switch. 
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• It uses a very different garbage collection strategy than Swing. We uncovered a
significant garbage collection hole in Java for Windows and Linux (Java on the
Mac seems fine) during the course of this effort. While everything worked well
enough for the prototyping work done in this project, for a production
environment this memory leak would be unacceptable. We believe the memory
leak lies in Swing and its interface to the native graphics system. The SWT
garbage collection strategy, while more primitive, is also more likely to work
correctly. Once again, this all by itself would be a compelling reason to switch. 

Our exploration of SWT has not yet progressed to the point where we are certain
that it meets our needs for functionality and capability-compatible modularity, but
it looks very promising. The Eclipse development environment is de facto
evidence that the toolkit has extensive functionality, so it is unlikely that a
problem will be identified in this realm. The capability-compatibility remains the
greatest risk, though preliminary investigation has not identified any fatal
problems (though we have identified one place, in the drag and drop formats
supported, where more work will be required than is required in Swing).

Assessment of Capabilities for Intelligent Agents and User Interface Agents

One of the enhancements made to the DarpaBrowser that went above and
beyond the minimum requirements of the contract was the embedding of a caplet
launching framework inside the browser itself. If the DarpaBrowser encounters a
page whose url ends with “.caplet”, the browser not only renders the text from
that page, but also launches a capability confined application from it. This
application lives in a separate trust realm from the browser itself; it is guaranteed
that the new caplet cannot use the browser’s authorities, and it is also
guaranteed that the browser cannot use any authorities later granted to the new
caplet. 

The use of the DarpaBrowser to launch caplets from across the web in safety is a
simple demonstration of the potential of capability security for enabling the
development of a new generation of harmless yet powerful mobile software
agents. Cooperating members of a community could grant sensible authorities
(such as, the authority to read a document folder) to mobile agents confidently
and painlessly. These software agents could delegate their authority to more
evolved agents without either user intervention or user concern. There is no
security or usability reason such agents could not evolve to the point where they,
not the human beings, were doing the most work on the Web, informing us about
results when they reached a threshold of value relevant to us. 

Let us look at a simple example, the SETI screensaver project, in a capability
context. The SETI screensaver is effectively an agent seeking computing
resources. The authorities it needs are reasonably simple:

27



Combex/Focused Research Topic 5/BAA-00-06-SNK 11/18/2002

Authority to communicate with a single Web site (the SETI central coordination
site)

Authority to write to the screen until a keystroke or mouse click occurs (i.e., an
authority on a revokable forwarder to the display, with the forwarder automatically
revoking itself on KeyPress or MouseDown)

These authorities run little risk of compromising the computer. Indeed, these
authorities fall easily inside Granma’s Rules of POLA: running the SETI
screensaver requires no breaking of the basic security principles. Yet the current
SETI software, because it must run with standard Windows ambient authority, is
as dangerous as the possibly-malicious renderer in the DarpaBrowser. Large
numbers of people who would otherwise run SETI will not do so because of the
security implications. And the caution about allowing software agents to run on
the individual home computer is necessarily multiplied by orders of magnitude if
the desire is to run agents on large databases. As a consequence, we believe
that capability security is not merely a good idea for software agents. We believe
capability security is a requirement if this kind of computing is ever to achieve its
destiny.

To support software agents properly, the capability management system
embodied in the CapDesk Powerbox must be fleshed out to support all the
different kinds of authority grants that make sense. A particular area where some
research is required is in the general-purpose designation of authority to speak to
other objects, as distinct from the authority to access system resources (the
authority to read a directory is access to a system resource; the authority to talk
to a third party spell checker requires a general-purpose object-to-object granting
framework). But the principles have already been demonstrated. The road to a
flexible capability framework is generally smooth, with only a few twists and turns
remaining before software agents can be properly and fully supported. 

Conclusions

Capability based security enables software developers to achieve computer
security goals that cannot be reached with conventional security systems. The
capability paradigm also enables more cost-effective security reviews that can
provide better confidence that these security goals have been achieved.
Furthermore, early indications are that these security goals can be achieved with
neither undue hindrance of the user, nor with noticeable constriction of the
functionality of the computing platform. The user-friendly power of capability
security is demonstrated in the picture below.
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In this picture four different trust realms interact flexibly, securely, and in a user-friendly fashion.
The CapDesk in the background is running with TCB authority; the DarpaBrowser is in a
confined trust realm with only an HTTP protocol authority; the renderer inside the browser is
running in a trust realm with only access to a single window panel, and a single URL at any given
time as specified by the browser; the text-editing Caplet is running in a trust realm with read/write
authority to a single file. The applications all look and feel like ordinary unconfined applications;
no passwords are needed, no certificates need to be studied for validity; interaction between the
trust realms proceeds smoothly and intuitively, but only at the behest of the user, never under
the control of the less-trusted applications.

However, even with the power of capability security, truly securing our computers
from cyberattack is hard work. In particular, the core infrastructure--components
such as CapDesk, the Powerbox and the E E Language itself--must be developed
by seasoned capability security professionals, and must be reviewed by peers of
equal skill. We suggest that, for this reason among others, such infrastructure
needs to be built under public scrutiny, using open source licenses, and that
professional security reviews are still a crucial part of the process of building
secure systems.

Nonetheless, one of the truly remarkable powers capability security gives us is
the ability to turn the bulk of the work in building secure systems over to people
who have no security expertise whatsoever. Indeed, untrusted developers (even
professional crackers!) can build large parts of the most sensitive computing
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systems. How can this be? It can be because any module that does not receive
powerful authorities can be written by anyone in the world with no security
consequences. This is explicitly demonstrated by the Malicious Render's inability
to achieve authority-stealing security penetrations.

Capability patterns of software modularization as simple as the basic E E module
mechanism (which grants no authority whatsoever upon importation) and as
sophisticated as the Powerbox developed to confine the DarpaBrowser can
isolate untrusted subsystems, be they modules written by subcontractors of the
British government or agents of the Chinese intelligence services. While we do
not expect to see our military depending on the Chinese government for sensitive
software development any time soon, this scenario demonstrates the power of
the capability paradigm, and the brightness of the future in which capabilities
become ubiquitous.
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Appendix 1: Project Plan

Project Plan
Capability Based Client
Combex Inc.

BAA-00-06-SNK; Focused Research Topic 5

Technical Point of Contact:
Marc Stiegler
marcs@skyhunter.com

INTRODUCTION AND OVERVIEW

Capability security is Combex will develop a capability-secure Web browser that
confines its rendering engine so that, even if the rendering engine is malicious,
the harm which the renderer can do is severely limited. 

HYPOTHESES

We hypothesize that capability secure technology can simply and elegantly
implement security regimes, based on the Principle of Least Authority, that
cannot be achieved with orthodox security architectures including firewalls and
Unix Access Control Lists. Specifically, we hypothesize that capability security
can confine the authority granted to an individual module of a Web Browser, the
rendering engine, such that the rendering engine has no authority over any
component of the computer upon which it resides except for:

authority over a single window panel inside the web browser, where it has full
authority to draw as it sees fit

authority to request URLs from the web browser in a manner such that the web
browser can confirm the validity of the request

authority to consume compute cycles for its processing operations.

We cannot directly test and prove that all theoretically possible authorities
beyond these three are absent. Therefore, for experimental purposes, we invert
our experimental basis to specifically prove that several other traditionally easy-
to-access authorities are unavailable: We hypothesize that the rendering engine
will not have any of the following specific authorities: 

No authority to read or write a file on the computer's disk drives
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No authority to alter the field in the web browser that designates the URL most
recently retrieved

No authority to alter the web browser's icon image in the top left corner of the
window

No authority to alter the title bar in the web browser's window

No authority to receive information from an URL that is not on the most recently
requested web page (the HTML text URL, the image URLs for that page, and
other URLs that specify page content for the main HTML text URL; it may also
request a change of URL to another page specified by a hyperlink on the page).

No authority to move to another URL (via hyperlink) without having the web
browser update the browser field that designates the current page being
displayed

No authority to send information to any URL on the Web

Even with the limited set of authorities granted to the renderer, there are a couple
of malicious acts it can perform, though these acts are severely constrained. In
particular, we hypothesize that the renderer can:

Undertake a Denial of Service attack by consuming as many compute cycles as
it can acquire; the counterstrategy for the computer owner will be to shut down
the application.

Render the current web page incorrectly. Incorrect rendering may even take the
form of rendering what appears to be a different page, though this false page
must be based on data embedded in the renderer's source code, and cannot be
a true live representation of another actual page off the Web.

EXPERIMENTAL SETUP

To conduct the experiment, we shall first build a web browser that supports
modularly pluggable alternate rendering engines on top of an E E Language
Machine(EELM).

The E E programming language supplies a capability secure, strongly encrypted
software development infrastructure, along with a deadlock free promise-based
concurrency architecture. Using E E and the Capability Windowing Toolkit API
which comes with EE, one can built software applications, known as caplets, that
have individually confined authority to separate window panels, and unforgeable,
unspoofable window frames. The E E Language Machine will be built by putting an
E E virtual machine on top of a sanitized Linux kernel as the only application
running on the platform; in effect, this turns the entire computer into a pure
capability secure system (See Diagram below).
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Having built a modular web browser on EELM, we shall prove the basic
operational success of the browser by building a simple Benign Renderer that
merely performs its rendering function, presenting Web pages to the best of its
ability within the context of its understanding of HTML syntax and semantics.
Since this Benign Renderer will be plugged in using the same modular interface,
it will be living in the same capability confinement as the confinement in which
the Malicious Renderer will later operate. 

Once this has been demonstrated successfully, we will build a Malicious
Renderer that will attempt to exercise the authorities explicitly disallowed in the
Hypotheses. This Renderer will also exercise the two types of malicious behavior
that are allowed by the granted authorities.

PROOF OF HYPOTHESES

Having built a basic Malicious Renderer, we shall invite two prominent members
of the security community to consult with us by exploring the capability
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confinement around the Renderer, and modifying the Renderer as they see fit to
exploit any opportunities for malicious activity we have missed. We anticipate
that security breaches identified by the consultants may fall into one of these
categories:

Simple implementation flaws: An easily corrected implementation flaw caused by
an error in the implementation of the capability architecture. Should our security
consultants identify such flaws, we will fix them prior to final delivery and
demonstration, though we will report them in the final report. Such flaws are not
considered to be proofs of invalidity of the hypothesis.

Complex implementation flaws: An implementation flaw that is not easily
corrected in the experimental system. Such a flaw will be not be corrected for
final delivery, will be reported, but will not be considered a proof of the invalidity
of the hypothesis.

Architectural flaws: An architectural flaw is a flaw that cannot be corrected within
the domain of a pure capability system. Such a flaw would be considered proof
that the hypotheses were invalid.

Because the distinction between a complex implementation flaw and an
architectural flaw could be blurry, if a flaw is identified that falls into either of
these two categories, the consultants themselves will write sections of the final
report detailing their assessment of the correct categorization and the reasons for
that categorization.

DEMONSTRATIONS

Demonstration 1: Our first demonstration will present a web browser using a
Benign Renderer, to show that we have achieved the construction of a web
browser with pluggable rendering engines. We expect to make this
demonstration on or about November 4, 2001.

Demonstration 2: Our second demonstration will present the web browser using
the Malicious Renderer. This Malicious renderer will attempt to exercise the
disallowed authorities specified under Hypotheses, and will demonstrate the two
allowed types of malicious behavior described in the Hypotheses. We expect to
make this demonstration on or about March 1, 2002.

Demonstration 3: Our third demonstration will present the web browser using
the enhanced Malicious Renderer, i.e., the Renderer as altered by our security
consultants to exploit security weaknesses they have identified. This
demonstration will highlight flaws in the categories of "complex implementation
flaws" and "architectural flaws". We expect to make this demonstration on or
about June 28, 2002.
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Appendix 2: DarpaBrowser Security Review

A Security Analysis of the Combex
DarpaBrowser Architecture
David Wagner
Dean Tribble
March 4, 2002

INTRODUCTION

We describe the results of a limited-time evaluation of the security of the Combex
DarpaBrowser, built on top of Combex’s EE architecture. The goal of our review
was to evaluate the security properties of the DarpaBrowser, and in particular, its
ability to confine a malicious renderer and to enforce the security policy
described in the Combex Project Plan. Our mission was to assess the
architecture. We were also asked to analyze the implementation, but only for
purposes of identifying whether there were implementation bugs that could not
be fixed within the architecture.

This report contains the results of in excess of eighty person-hours of analysis
work. Tribble and Wagner spent a week intensively reviewing EE version 0.8.12c
and the DarpaBrowser implementation contained therein. Stiegler and Miller
were on hand to answer questions.

1. DARPABROWSER PROJECT 

This section restates the security goals to be accomplished and expands on the
detailed threats to be considered in the review process.

1.1 General goals

As described in the original Focused Research Topic (FRT) for which this
capability based client was developed, 

“The design objective for the client is to render pages in such a manner that pages are
effectively confined and prevented from corrupting each other or the underlying
operating system. The capability-based protection is to be afforded by the confinement
mechanism even in the presence of vulnerabilities in the rendering engine, presence of
malicious code, or malicious data as input. Moreover, under all circumstances the
Universal Resource Locator (URL) must either be accurately displayed or an
appropriate fault condition displayed as to why the URL cannot safely or accurately be
displayed.”
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As delineated in more detail in the Combex Project Plan, the renderer for the
capability based client shall be confined to the extent of not having any of the
following abilities:

1. No ability to read or write a file on the computer's disk drives

2. No ability to alter the field in the web browser that designates the URL
most recently retrieved

3. No ability to alter the web browser's icon image in the top left corner of the
window

4. No ability to alter the title bar in the web browser's window

5. No ability to receive information from an URL that is not on the most
recently requested web page (the HTML text URL, the image URLs for
that page, and other URLs that specify page content for the main HTML
text URL; it may also request a change of URL to another page specified
by a hyperlink on the page). See note below.

6. No ability to move to another URL (via hyperlink) without having the web
browser update the browser field that designates the current page being
displayed

7. No ability to send information to any URL on the Web. See note below.

For item 5, as mentioned in the Project Plan, it is important to draw a distinction
between a renderer that is rendering badly, as opposed to a renderer that is
rendering based on information from unauthorized sources. A renderer could
simply display “Page not available” regardless of what input it receives; this
would be an example of bad rendering, rather than a breach of security. In a
subtler example, if the renderer draws only a single image that has been
specified in the authorized Web page, it could in principle be viewed as a
rendering of an URL other than the designated one; nonetheless, we consider it
to be a bad rendering, since it is displaying a piece of the specified page.

For item 7, we interpret the phrase “any URL” to mean “any arbitrary URL, or any
URL not specified in the HTML of the current page to receive information”; clearly
if the HTML of the current page specifies a form to be filled out, it is valid to send
the form data to the specified location.

We consider these objectives in the presence of two threat models:

1.1.1 Threat 1: The Lone Evil Renderer

In this threat model, the renderer is acting alone to breach its confinement. It will
attempt to compromise the integrity of the user’s system, collect private data, use
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the user’s authority to reach unrelated web pages, and attempt to sniff passing
LAN traffic, without outside assistance. 

1.1.2 Threat 2: Conspiring Server

In this scenario, the malicious renderer is working with a remote web site to
breach confinement. At first it might seem that such a match-up of a malicious
renderer with a malicious server is unlikely: why would a user happen to wander
over to the conspiring Web site? In fact, this scenario is quite reasonable: if the
renderer starts drawing poorly, what could be more natural than to go to the
developers’ Web site to see if there is an upgrade or patch available? In any
case, this is the extreme version of the simpler scenario in which a benign but
flawed renderer is attacked by a malicious web page: in principle, a sufficiently
vulnerable benign renderer could be totally subverted to do the web site
operator’s bidding, becoming a malicious renderer with a conspiring server.

In the context of this threat model, it is important to discriminate the meaning
security can have within the scope of the basic nature of HTML. First of all, there
is necessarily an explicit overt channel available to the web site, using the form
tag as defined in HTML. Using this channel does not violate any of the criteria set
forth in the FRT or the Project Plan, but it does impose an important constraint on
the quality of security when faced with a conspiring server.

An even more interesting related issue was identified early in the review: HTML
itself assumes the ubiquitous usage of designation without authority, a
fundamental violation of capability precepts. As a consequence, any correctly
designed renderer suffers from the confused deputy problem, first elaborated by
Norm Hardy, described at http://www.cap-
lore.com/CapTheory/ConfusedDeputy.html.

A worst-case example of this problem can be found in the following situation.
Suppose the malicious web site is operated by an adversary who knows the URL
of a confidential page on the user’s LAN, behind the firewall. When the user
comes to the web site (perhaps in search of an upgrade version of the renderer),
the site sends a framed page using the HTML frame tag. The frame designates
two pages: one page is a form to be submitted back to the malicious web site,
and one page is the confidential page whose URL is known to the adversary.
Given this framed set of pages, the malicious renderer has all the authority it
needs to load the confidential data (in framed page 2) and send it to the
adversary (as the query string submitted with the form of framed page 1). 

Even this does not violate the goals stated in the FRT or the Project Plan, as
outward communication to the operator of the current page is not required to be
confined. But it does highlight a need to be clear about what can and cannot be
achieved without redefining HTML and other protocols whose strategy of
unbundling designation and authority leave users vulnerable to confused deputy
attacks. 
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1.1.3 Other Threat Models 

Several other threat models were rejected as part of the analysis since they were
not included, explicitly or even implicitly, in either the FRT or the Project Plan.
Conspiracies of confined malicious renderers, using wall-banging or other covert
channels to communicate, are considered out of scope. Conspirators playing a
man-in-the-middle role on the network (at the user’s ISP, for example) are out of
scope. And denial of service is explicitly stated to be out of scope in the Project
Plan. 

2. REVIEW PROCESS

The first day of the review was spent walking through the overall architecture of
the system, starting from the User Interface components, identifying the
underpinning elements and their interrelationships. This overall architecture was
assessed for “hot spots”, i.e., critical elements of the system whose failure could
most easily create the most grievous breaches. The hot spots identified were

• Kernel EE: the compact representation into which all EE code is translated
before execution. A flaw in Kernel EE could produce unpredictable
vulnerabilities throughout the system.

• Universal Scope: if the Universal Scope, to which all caplets and library
packages are granted access at startup, contained an inappropriate
authority, this authority would undermine the confinement.

• Taming: The taming mechanisms are a wrapper for the Java API that
suppress improperly conveyed authority, making it possible to acquire
authority only through proper interaction with the user (typically through
the Powerbox, described next). Improper authorities that escape
suppression by taming are immediately available for all caplets and
libraries, including the renderer. Two taming mechanisms are present in EE:
a legacy mechanism that is being phased out, and the SafeJ mechanism
that is replacing it.

• The Powerbox: this is the component through which special powers are
conveyed to caplets. If the Powerbox granted improper authority to the
caplet (the DarpaBrowser in this case), there would be a risk that it could
leak to the renderer, where it could be exploited.

• The Browser Frame: if the browser frame, which controls confinement of
the renderer, leaks authority to the renderer, this is the basis for an
immediate security breach.

The Browser Frame and the Powerbox were small enough to be reviewed line-
by-line for risks. Kernel EE and the Universal Scope were small enough to allow
direct review of the critical core elements where the most serious risks were most
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likely to occur. The SafeJ system was too large for such a targeted review in the
time available. Instead, it was analyzed by inspection of the documentation
automatically generated for it from the SafeJ sources, and by “dipping in” at
places that seemed likely to convey authority. Potential attacks were often
confirmed or denied using the Elmer scratchpad that allowed the construction of
quick experimental code passages in EE.

3. THEIR APPROACH 

This section describes the approach taken by Combex to build a system that
could achieve the security goals of the project.

3.1 Capability model

The Combex team’s architecture is fairly simple from a high-level view: they build
an execution environment that restricts the behavior of untrusted code—i.e., they
build a “sandbox”—and they use this to appropriately confine the renderer. Once
we have a sandbox that prevents the renderer from affecting anything else on the
system, we can then carefully drill holes in the hard shell of the sandbox to let the
renderer access a few well-chosen services (e.g., to allow it to draw polygons
within the browser window). The crucial feature here is that by default the
renderer starts with no access whatsoever, and then we allow only accesses that
are explicitly granted to it. This is known as a “default deny” policy, and it has
many security advantages: by following the principle of least privilege (also
known as the principle of least authority, or POLA), it greatly decreases the risk
that the renderer can cause harm by somehow exploiting the combination of
powers granted to it. We want to emphatically stress that Combex’s “default
deny” policy seems to be the right philosophy for the problem, and in our opinion
anything else would carry significant risks.

So far this is fairly standard, but the real novelty comes in how Combex has
chosen to implement its sandbox. Combex uses a capability architecture to
restrict the behavior of the sandboxed renderer. In particular, every service an
application might want to invoke is represented by an object, and each
application can only use a service if it has a reference to that service. In EE,
references are unforgeable and are known as capabilities.

A crucial point of the capability architecture is that every privilege an application
might have is conveyed by a capability. The set of operations an application can
take is completely defined by the capabilities it has: i.e., there is no other source
of “ambient authority” floating around that would implicitly give the application
extra powers. To sandbox some application, then, we can simply limit the set of
capabilities it is given when it comes to life. An application with no capabilities is
completely restricted: it can execute EE instructions of its choice (thereby
consuming CPU time), allocate memory, write to and read from its own memory
(but not memory allocated by anyone else), and invoke methods (either
synchronously or asynchronously) on objects it has a capability/reference to.
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Applications can be partially restricted by giving them a limited subset of
capabilities. The EE architecture enforces the capability rules on all applications.

Now the Combex game plan for confining malicious renderers is apparent. To
prevent a malicious renderer from harming the rest of the system, we must
simply be sure it can never get hold of any capability that would allow it to cause
such harm. Note that this has a very important consequence for our security
review. We need only consider two points:

• Does the EE implementation correctly enforce capability discipline?

• Can a malicious renderer gain access to any capability that would allow it
to violate the desired security policy?

Our review was structured around verifying these two properties.

The first point—full enforcement of capability discipline—requires reviewing the EE
interpreter and TCB (trusted computing base). We will tackle this in the next
section.

The second point—evaluating the capabilities a malicious renderer might
have—requires studying every capability the renderer is initially given and every
way the renderer could acquire new capabilities. We will consider this in great
detail later, but a few general comments on our review methodology seem
relevant here.

First, listing all capabilities that the renderer comes to life with is straightforward.
Because the renderer is launched by the DarpaBrowser, we simply examine the
parameters passed into the renderer object when it is created, and because
applications do not receive at startup time any powers other than those given
explicitly to them (the “default deny” policy, as implemented by EE’s “no ambient
authority” principle), this gives us the complete list of initial capabilities of the
renderer.

Identifying all the capabilities that a malicious renderer might be able to acquire is
a more interesting problem. A malicious renderer who can access service S
might be able to call service S and receive as the return value of this method a
reference to some other service T. Note that the latter is a new capability
acquired by the renderer, and if service T allows the malicious renderer to harm
the system somehow, then our desired security policy has been subverted. In
this way, a renderer can sometimes use one capability to indirectly gain access
to another capability, and in practice we might have lengthy chains of this form
that eventually give the renderer some new power. All such chains must be
reviewed.

This may sound like a daunting problem, but there was a useful principle that
helped us here: an application can acquire capability C only if the object that C
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refers to is “reachable” from the application at some time. By reachability, we
mean the following: draw a directed graph with an edge from object O to object P
if object O contains a reference to P (as an instance variable or parameter), and
say that object Q is reachable from object O if there is a sequence of edges that
start at O and end at Q. Consequently, reachability analysis allows us to
construct a list of candidate capabilities that a malicious renderer might be able
to gain access to, with the following guarantee: our inferred list might be too large
(it might include capabilities that no malicious renderer can ever obtain), but it
won’t be too small (every capability that can ever be acquired by any malicious
renderer will necessarily be in our list). Then this list can be evaluated for
conformance to the desired security policy.

We used static reachability analysis on EE code frequently throughout our review.
The nice feature of reachability analysis is that it is intuitive and quite easy to
apply to code manually: one need only perform a local analysis followed by a
depth-first search. In many cases, we found that some object O was not
reachable from the renderer, and this allowed us to ignore O when evaluating the
damage a renderer might do. We’d like to emphasize that knowing which pieces
of code we don’t need to consider gave us considerable economy of analysis,
and allowed us to focus our effort more thoroughly on the remaining components
of the system. We consider this a decidedly beneficial property of EE, as it allows
us to improve our confidence in the correctness of the Combex implementation
and thereby substantially reduce the risk of vulnerabilities.

In addition, since most components start with no authority (beyond the ability to
perform computation, such as creating lists and numbers), even though they are
transitively reachable from another component, they cannot provide additional
authority to their clients (because they do not have any authority to give), and so
cannot lead to a security vulnerability. 

3.2 Security Boundaries

Confinement is not sufficient for the DarpaBrowser (and many other systems).
Instead, a mostly confined object (the renderer) must be able to wield limited
authority outside itself, across a security boundary that restricts the access of the
confined object. The object that provides it that limited authority (the security
management component) has substantially more authority (for example, the
authority to render into the current GUI pane is a subset of the authority to
replace the pane with another). Transitive reachability shows that the confined
component could potentially reach anything that the security management
component could reach, and indeed a buggy or insecure security management
component could provide precisely that level of access to the intended-to-be-
confined component.

In general, security boundaries between each of the components of the system
are achieved almost for free using EE. To allow object A to talk to B, but in a
restricted way, we create a new object BFacet exporting the limited interface that
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A should see, and give A a reference (a capability) to BFacet. Note that EE’s
capability security ensures that A can only call the methods of BFacet, and
cannot call B directly, since A only has a reference to BFacet and not to B. 

The Combex system extends this style into a pattern that further simplifies
analysis of confined components. The target component is launched with no
initial authority, and is then provided a single capability analogous to the BFacet
above, called the Powergranter, that contains the specific authorities that the
confined component may use. The Powergranter becomes the only source of
authority for the confined component and embodies the security policy across the
boundary. Thus, the pattern makes it clear which code must be reviewed to
ensure that the security policy is enforced correctly.

3.3 Non-security Elements that Simplified Review 

This section describes some elements of the EE design that were not motivated by
security, but that contributed either to security or the ease of reviewing for
security.

3.3.1 EE Concurrency Model

The review was substantially simplified by the concurrency model in EE. In the EE
computational model, each object only ever executes within the context of a
single Vat. Each Vat contains an event queue and a single thread that processes
those events. Messages between objects in different vats use an “eventual”
send, that immediately returns to the sender after posting an event on the
receiver’s vat for the message to be delivered synchronously within that vat. As a
result, objects in EE never deal with synchronization. Consequently, all potential
time-of-check-to-time-of-use (TOCTTOU) vulnerabilities could be evaluated
within a single flow of control, and thus took little time to check for. By contrast, in
systems in which multiple threads interact within objects, such determinations
can be extremely difficult or infeasible to determine.

3.3.2 Mostly-functional Programming Support

An interesting side note is that EE’s support for mostly functional programming
seems to have security benefits. Mostly-functional programming is a style that
minimizes mutable state and side effects; instead, one is encouraged to use
immutable data structures and to write functions that return modified copies of
the inputs rather than changing them in place. (Pure functional programming
languages allow no mutable state, and often also stress support for higher-order
functions and a foundation based on the lambda calculus. EE does provide similar
features; however, these aspects of functional programming do not seem to be
relevant here.) The EE library provides some support for functional programming in
the form of persistent (immutable) data structures, and we noticed that EE code
also seemed to often follow other style guidelines such as avoiding global
variables. This seems to provide two security benefits.
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First, immutable data structures reduce the risk of race conditions and time-of-
check-to-time-of-use (TOCTTOU) vulnerabilities. When passing mutable state
across a trust boundary, the recipient must exercise great caution, as the value
of this parameter may change at unexpected times. For instance, if the recipient
checks it for validity and then uses it for some operation if the validity check
succeeds, then we can have a concurrency vulnerability: the sender might be
able to change the value after the validity check has succeeded but before the
value is used, thereby invalidating the validity check and subverting the
recipient’s intended security policy. Similarly, when passing mutable state to an
untrusted callee, the caller must be careful to note that the value might have
changed; if the programmer implicitly assumed its value would remain
unchanged after the method call, certain attacks might be possible.  Our
experience is that it is easy to make both of these types of mistakes in practice.
Using immutable data structures avoids this risk, for if the sender and recipient
know that all passed parameters are immutable then there is no need to worry
about concurrency bugs. To the extent that EE code uses immutable data
structures, it is likely to be more robust against concurrency attacks; we observed
in our review that when one uses mutable state, vulnerabilities are more
common.

Second, the use of local scoping (and the avoidance of global variables) in the EE
code we reviewed made it easier to analyze the security properties of the source
code. In particular, it was easier to collect the list of capabilities an object might
have when we only had to look at the parameters to its method calls and its local
instance variables, but not at any surrounding global scope. Since finding the list
of possessed capabilities was such an important and recurring theme of our
manual code analysis, we were grateful for this aspect of the Combex coding
style, and believe that it reduced the risk of undiscovered vulnerabilities.

4. ACHIEVING CAPABILITY DISCIPLINE

In this section, we evaluate how well EE achieves capability discipline, i.e., how
effective it is as a sandbox for untrusted code. The crucial requirement is that the
only way an application can take some security-relevant action is if it has a
capability to do so. In other words, every authority to take action possessed by
the application must be conveyed by a capability (i.e., an object reference) in the
application’s possession. 

There is a single underlying principle for evaluating how well EE achieves this
objective: there must be no “ambient authority”. Ambient authority refers to
abilities that a program uses implicitly simply by asking for resources. For
example, a Unix process running for the “daw” user comes to life with ambient
authority to access all files owned by “daw”, and the application can exercise this
ability simply by asking for files, without needing to present anything to the OS to
verify its authority. Compare to EE, where any request for a resource such as a file
requires not just holding a capability to the file (and applications typically start
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with few authorities handed to them by their creator), but also explicitly using the
capability to the file in the request.

We start by looking at the default environment when an application is started. In
EE, the environment includes the universal scope, a collection of variable/value
bindings accessible at the outermost level. If the universal scope included any
authority-conveying references, the “no ambient authority” principle would be
violated, so we must check every element of the universal scope. We discuss
this first. We shall also see that a critical part of the universal scope is the ability
to access certain native Java objects, so we devote considerable attention to this
second. Finally, we examine the EE execution system, including the EE language,
the EE interpreter, the enforcement of memory safety, and so on. 

4.1 UniversalScope

The EE language is quite spare, and many programming features that would be
part of the language syntax in other languages are pushed to the universal scope
in EE. The EE universal scope contains values for constructing basic values (such
as integers, strings, lists of integers, and so on), promises, references, and
exceptions. It also contains some utility functionality, for regexp matching,
parsing of EE scripts (“eval”), and so on. It contains support for control-flow
constructs: loops, and the ability to throw exceptions. It also contains objects that
let one control the behavior of EE. All of these seemed appropriate and safe to
grant to untrusted applications.

The universal scope also allows applications to create a stack trace, for
debugging purposes. Such a backtrace would not reveal the value of internal
variables of other stack frames, but could potentially reveal information present at
the site of the exception. For example, an inner confined object could throw an
exception containing a capability that was confined (e.g., a private key or
database), through an intermediate caller, to a colluding outer object, thus
breaking confinement. Also, the depth of the execution stack is visible, which
could pose a risk in certain scenarios: for instance, consider trusted code
containing a recursive function whose level of recursion depends on some
sensitive data (e.g., a secret cryptographic key), and suppose the recursive
function is called with arguments that induce it to hit an error condition and throw
an exception from deep within the recursion. In such a case, the caller might be
able to learn something about the callee’s secrets by catching the exception,
examining the resulting stack trace, and recovering the stack depth. These
scenarios do not occur in the DarpaBrowser, but have been used in exploits on
other systems. Accordingly, though the risk for DarpaBrowser is small, it should
probably be repaired (Fixing this was determined not to be hard).

We note that the universal scope provides no way to gain access to the network,
to remote objects, or to the hard disk (apart from the resource__uriGetter;
see below). Moreover, it is an invariant of the DarpaBrowser implementation that
the renderer never receives any remote references nor any way to create them;
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consequently, though the EE language contains support for distributed
computation, we do not need to consider this aspect in our review of the renderer
sandbox.

There is one detail we have not discussed yet: the universal scope also contains
several objects known as uriGetters, which deserve extra attention. Every
application receives two such uriGetters: a resource__uriGetter, and an
import__uriGetter.

The resource__uriGetter allows applications to load application-specific
resources, such as an image file containing their icon and so on. The application
is not (by default) allowed to modify those resources, and the resources are
supplied when the application is installed on disk. This data is stored in a special
directory on disk. Thus, the application can effectively read to this very special
part of the file system, but not to any other files, nor can the application write to
these files. Given the contents of these resources, the resource__uriGetter
seems to pose little risk.

The import__uriGetter gives the application access to the EE library
(collections, messages, and more, all in EE), the EE interpreter and parser, and
various utility code (e.g., a Perl5 regexp matcher and a XML parser). The
import__uriGetter also allows the application to load certain Java classes,
instantiate them, and obtain a reference to the resulting Java object. Once the
application has a reference to such a Java object, the application can make
method calls on that object and interact with it. Such Java objects run
unrestricted, not under the control of the EE architecture, and hence must be
trusted not to violate capability discipline or otherwise convey authority. Since
interaction with Java objects obviously provides a potential way in which a
malicious renderer might be able to subvert the EE sandbox, we discuss this very
important aspect of EE in detail next.

4.2 Taming the Java Interface

One of the goals of the EE architecture is to allow Java programmers to easily
transition to writing EE code, and in particular, to continue using familiar Java
libraries. For example, EE lets programmers use the Java AWT and Swing toolkits
for building graphical user interfaces. This means that EE code needs access to
legacy Java classes. This comes with significant risks, as the Java code may not
have been written in accordance with capability discipline, and since Java code is
not subject to EE’s capability enforcement mechanisms, this might allow security
breaches if care is not taken. Unfortunately, not all Java classes are safe to give
to untrusted applications: some would allow the renderer to escape the sandbox.
For instance, calling new File(“/etc/passwd”) would give the renderer
access to the password file on Unix, and hence sandboxed applications must not
be allowed to call the constructor method on java.io.File.
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The EE solution is to restrict the application’s access to Java classes and
methods. There are several mechanisms for enforcing these restrictions: SafeJ,
the legacy mechanism, and fall-through behavior. The legacy mechanism hard-
codes policy for a few Java classes. (The listed classes are considered as safe
but with all methods allowed, unless there is a specific annotation giving the list
of allowed methods, in which case all unmentioned methods are suppressed.)
SafeJ, the successor mechanism, is more flexible, and will be described next.

In SafeJ, Java classes can be marked either safe or unsafe. All applications are
allowed to invoke the allowed static methods and constructors of any class
marked safe via the import__uriGetter, which is available to all applications
from the universal scope. Consequently, classes marked safe can typically be
instantiated freely by all applications. In contrast, the only way to invoke static
methods or constructors of unsafe classes is through the unsafe__uriGetter,
which is not part of the universal scope and should not be available to untrusted
applications. Consequently, this lets us control which Java classes can be
instantiated (e.g., by calling their constructor) by untrusted applications.

This coarse-grained measure is not enough by itself, of course, because some
Java classes have a few methods that follow capability discipline and a few that
do not1. We could simply mark these classes unsafe, but such a conservative
approach would deny applications access to too much useful functionality.
Instead, SafeJ allows each public method to be marked either suppressed or
allowed. (Private and package-scope methods are treated as implicitly
suppressed.  Public constructors are handled as static methods with the method
name “new”, and suppressed or allowed as with any other method. Instance
variables are wrapped with getter and setter methods, and then the methods are
handled as before, with one exception: public final scalar variables are always
implicitly marked allowed. Methods that aren’t listed in the SafeJ database but
are part of a class that is listed in the database are treated as implicitly
suppressed.) Applications are only allowed to call unsuppressed methods. (No EE
application can directly call a suppressed method, no matter what capabilities it

1 It is a little tricky to define exactly what it means for a method to follow capability discipline. Imagine if
java.lang.String had a static method called formatHardDrive() that erased the entire filesystem. Would this be
a failure of capability discipline? One could argue that the java.lang.String class is an abstraction of the entire
hard disk and hence any reference to it conveys authority to delete the entire hard disk; this would be following
capability discipline. (Such an interpretation would undoubtedly be surprising and confusing to many
programmers: one might expect an instance of a class named java.io.HardDisk to represent the hard disk, and
a java.io.HardDisk.formatHardDrive() method would be reasonable and expected, but surely not on a
java.lang.String. This highlights the difficulty of declaring java.lang.String.formatHardDrive() a violation of
capability discipline in any principled way, as the only real difference between java.lang.String and
java.io.HardDisk is the name of the class.) However, in practice it is easy to detect a violation of capability
discipline. We expect each Java object to represent some abstract or real-world entity, service, or resource; a
reference to that Java object conveys authority to the represented entity, and we may reasonably insist that
method calls should only allow the caller to affect the represented entity, and nothing else. Thus, a java.io.File
object represents a file on the hard disk, a javax.swing.JEditorPane represents an editing window on the
screen, and so on. Many—but not all—Java objects mostly respect this intuitive notion of capability discipline.
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has.) Java classes that have been made safe to export to EE in this way are
sometimes known as tamed classes.

Finally, if a class is not listed in the SafeJ database and not controlled by the
legacy mechanism, the fall-through behavior applies. In particular, the default for
such classes is that they are treated as though they had been marked unsafe (so
they can only be instantiated by applications trusted with the
unsafe__uriGetter), but all methods are treated as allowed.

Consequently, the presence of the import__uriGetter in the universal scope
and the other ways of obtaining references to Java objects give all applications
access to a great deal of trusted Java code, and this must be carefully reviewed.
In particular, a sandboxed application can invoke any allowed static method or
constructor on any Java object marked safe, and so can typically instantiate
these, and can call any unsuppressed method on any object it has obtained a
reference to (either by instantiating that object itself, or by obtaining such a
reference indirectly from other objects). To ensure that untrusted applications
cannot escape the sandbox, we must examine every unsuppressed method on
every safe Java class to be sure that they do not contain ambient authority.

An additional design goal of EE was that unsuppressed methods do not permit
reading covert channels: for example, EE applications should not be able to get
access to any information about the current time or to access any form of non-
determinism (the latter restriction helps avoid covert channels, and also makes
deterministic checkpointing easier), and there should be no global mutable state
shared between applications (except where such state is explicitly exchanged
between communicating applications). Java code can potentially violate these
restrictions, and we spent a little time on reviewing these properties. However,
because these restrictions are not necessary for the security of the
DarpaBrowser exercise, we did not put much attention into them.

We reviewed a great deal of Java code. However, there is simply too much
accessible Java code to review it all. Therefore, we used various methods to
identify classes likely to be at greatest risk for security breaches, and focused our
effort there. Also, we reviewed the process by which Combex authorized classes
as safe and methods as unsuppressed to look for any systematic risks. We will
describe first the result of our focused code analysis efforts, and then discuss the
process.

4.3 Security holes found in the Java taming policy

We found a vulnerability: java.io.File does not follow capability discipline,
yet its methods are allowed by the legacy mechanism. In particular, the
getParentFile() method returns a File object for the parent directory, and thus
given a reference to any one file on the filesystem a malicious application could
use this method to get a reference to any other file on the filesystem, breaking
confinement or worse. Obviously the getParentFile() method ought to be
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suppressed. Moreover, we suggest that File objects should be fully opaque with
respect to their location in the filesystem, and methods such as
getAbsolutePath(), etc., should also be suppressed. How did this error arise?
The java.io.File class was mediated by the legacy mechanism, and
because no method was annotated, by default all methods were inadvertently
allowed. This illustrates a general risk in the legacy mechanism: it uses a “default
allow” policy, which is very dangerous and should be avoided; in contrast, SafeJ
uses a “default deny” policy, which is much better suited to security.

We found a second security weakness: sandboxed applications can call show()
on their AWT and Swing windows and grab the focus. As a result, a malicious
renderer could steal the input focus from some other window; for instance, if the
user is typing her password into some other window, a malicious renderer might
be able to steal the focus from the other window and thereby observe the user’s
next few keystrokes before the user notices what has happened. The show()
method was suppressed in some classes, but unsuppressed in others, so there
are some holes. We suggest that all show() methods should be suppressed.
Moreover, it may be a good idea to check if any other methods internally call
show(); if so, they should be suppressed, too.

We found a significant vulnerability: the
javax.swing.event.HyperlinkEvent class, which is marked safe, contains
an allowed method getURL() that returns a java.net.URL object. Since
java.net.URL objects convey the authority to open a network connection and
fetch that URL, returning such an object gives the application considerable
power. We believe that this was not intended, and in particular, it may allow a
malicious renderer to violate the desired security policy as follows. Suppose the
malicious renderer registers itself to receive HyperlinkEvent callbacks
whenever the user clicks on a link in the renderer window. Then if the malicious
renderer can lure the user into clicking on some link in this window, the renderer
can receive authority to fetch the corresponding URL. In this way, a malicious
renderer could arrange to fetch any URL linked to on the current web page,
without involving the CapBrowser. This allows a malicious renderer to download
such a URL and display it, even though the URL field in the browser is not
updated. The renderer can continue in this way, fetching any URL transitively
reachable among the tree of links rooted at the current page, and thus can gain
access to all of the web that is reachable from the current page. This would allow
a malicious renderer to violate the “synchronization” security goal by rendering
one web page while the URL displayed above refers to another.

We found another, much less serious, weakness: java.awt.ComponentEvent
contains an allowed method, getComponent(), that works as follows. If the
user interacts with some AWT component (e.g., the browser window) in some
way (say, by resizing it or clicking within it), then an AWT event is generated and
sent to all listeners. The listener can find out which component this event is
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relevant to by calling the getComponent() method to get a reference to the
appropriate AWT component object. Note that the CapBrowser is able to
register a listener on its containing window. This could allow a malicious browser
to escape its confinement and draw outside its window. Our hypothetical
malicious browser would first register a listener on its parent window. Modifying
the parent window is off-limits for the browser, because the parent window
contains elements mediated by the PowerGranter. . If the user can be lured into
clicking or otherwise generating an event relevant to the parent window, the
malicious browser will receive a java.awt.ComponentEvent object that can
be queried via the getComponent() method to return a reference to the parent
window. Please note that this affects only the confinement of the CapBrowser,
and not of the renderer, because the renderer has no way to set a listener on the
parent window. Since confining the browser was not a goal of this project, this
weakness seems to have no impact on the security of the Combex
DarpaBrowser. We mention it only for completeness. We re-discovered a
vulnerability that was already known to the Combex team: the
java.awt.Component class has getDropTarget() and setDropTarget()
methods, marked allowed. This allows a malicious renderer to subvert the trusted
path to the user, spoof drag-and-drop requests from the user, and steal
capabilities that the renderer should not be able to get access to. In the Combex
CapDesk system, the user is considered trusted, and if the user uses the mouse
to drag-and-drop a file onto an application, this is considered as a request by the
user to authorize that application to access the corresponding file. In Java, when
a window is the target of a user’s drag-and-drop request, if that window has a
DropTarget enabled (which can be done by calling setDropTarget()), then a
drag-and-drop event will be created and sent to the DropTarget object.
Consequently, drag-and-drop events are treated as trusted designators of
authority, and thus Java’s DropTarget management is a critical part of the trusted
path to the user. However, an EE malicious renderer might be able to spoof drag-
and-drop requests by calling getDropTarget() and then sending a synthetic
drag-and-drop event to the drop target. More seriously, a malicious renderer
could steal file capabilities by registering itself as a DropTarget for some window
(note that effectively all windows and GUI elements are subclasses of
java.awt.Component and thus have their setDropTarget() method
allowed) and then proceeding to receive each drag-and-drop event and
extracting the capability for the file designated by the user. This may give the
malicious renderer access to files it should not have received, and the user may
not even realize that the malicious renderer is gaining access to these files, as
the user may have intended to drop that file onto the DarpaBrowser, not the
renderer.

We found an unimportant minor violation: java.lang.Object.toString()
may enable covert channels, since it can reveal the hash code of the object, an
undesired property (it ruins the equivalence of transitively immutable objects).
Similarly, by grepping the SafeJ database we found about four unsuppressed
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hashCode() methods, about 20 unsuppressed equals() methods, and about
thirteen unsuppressed toString() methods.  (Most hashCode(), equals(),
and toString() methods were correctly suppressed, but a few apparently
slipped through the review process.) We note that this does not affect the
security of the DarpaBrowser. We mention it only to point out the difficulty of
perfectly taming the Java interface: though suppressing these types of methods
seemed to be a goal of the taming process, a few instances were overlooked
inadvertently during the taming process, and so one might reasonably conclude
that the taming process is potentially somewhat error-prone.

We found another similar minor violation: it may be possible to use the
java.awt.Graphics2D class as a covert channel, because the
java.awt.RenderingHints object stored in the graphics context acts as
globally accessible, mutable state. In particular, the RenderingHints class
behaves much like a Java hashtable, with put() and get() methods. To remedy
this, the get() methods were all suppressed, apparently in an effort to make
RenderingHints behave like a piece of write-only state (more precisely, the
intent was apparently that EE applications should only be able to write to it,
whereas Java objects could both read from and write to it). However, this intent
was not carried out perfectly, as we found that RenderingHints has an
unsuppressed remove() method that takes a key and returns the value previously
associated with that key. This can allow EE applications to read the contents of
this pseudo-hashtable. Similarly, a put() method also returned the previous value
associated with a key, and this unsuppressed method could also create a covert
channel. Because covert channels are not relevant to the DarpaBrowser, this
small bug does not affect the security of the DarpaBrowser; we mention it only for
completeness.

Along similar lines, it turned out that though the get() methods of
RenderingHints were marked suppressed in the SafeJ database for the
RenderingHints database, they weren’t actually denied to the application. In
fact, the application could call the get() methods nonetheless, and this seems to
be because a superclass of RenderingHints, Map, controlled by the legacy
taming mechanisms, effectively marked get() as allowed and the superclass’s
annotation took precedence in this case. Again, this does not affect the security
of the DarpaBrowser, but is a defect that should be repaired.

We found a minor risk: the AWT keyboard focus manager
(java.awt.KeyboardFocusManager) was declared safe and allows the
getFocusKeyboardManager() method, which might allow stealing the focus or
even stealing certain keypress events—while we do not know of any attacks, we
do not have any confidence that attacks are impossible, and so we recommend
that this be marked unsafe. (Also, the Swing keyboard focus manager,
javax.swing.FocusManager, is declared unsafe but has other similar
methods allowed.) This does not appear to cause a risk for the DarpaBrowser,
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because these methods are only implemented in JDK 1.4 while the Combex
system is designed to run on JDK 1.3. However, there does seem to be an
important lesson here. The Java taming decisions are specific to a single version
of Java, and upgrading the Java libraries could create significant vulnerabilities if
those decisions are no longer appropriate. (We noticed several instances of this
risk: for instance, java.awt.event.MouseEvent.getButton() is allowed
and is dangerous, but fortunately appears only in JDK 1.4 so cannot be used in
an attack when EE is run using JDK 1.3, as it is for the DarpaBrowser.)
Consequently, we recommend that Combex warn users that EE should only be
used on the intended version of Java and take steps to defend against this risk if
Combex should ever decide to upgrade to a later version of Java. 

We identified several risks associated with the javax.swing.Action interface,
which encapsulates the ability to perform certain user interface actions (such as
a cut-and-paste operation). Many classes have getAction() and getActions()
methods allowed, which might leak a surprising capability to invoke one of these
actions to the malicious renderer. Similarly, many classes have setAction() and
setActions() methods allowed, which might allow a malicious renderer to change
the action associated with a user interface event and thereby change the
behavior of some trusted interface. We did not have time to look at all code paths
for all possible attacks, but we are worried about the risk of exposing these
capabilities to a malicious renderer: thus, this is not a known risk, but rather is a
“risk of the unknown”. We suggest that these methods should be suppressed
unless there is a convincing argument that they are safe.

4.4 Risks in the process for making taming decisions

From the taming bugs we found, we can see several general risks associated
with the EE taming mechanism and the process used by the Combex team to
make taming decisions.

First, the use of three different taming mechanisms is dangerous, as it can cause
confusion. And the “default allow” policies of the legacy mechanism and the fall-
back default are quite worrisome. For instance, the java.io.File.getParentFile()
vulnerability described above arose directly as a result of a “default allow” policy,
and we are concerned that there may be other vulnerabilities of this sort hiding
undiscovered. 

Second, the complexities of Java contribute to this danger. For instance,
consider subclassing. Suppose we suppress some method in the superclass
using SafeJ. Later, we encounter a subclass where this same method is
overridden. SafeJ will prompt us whether this should be allowed just as if it were
any other method, yet it clearly is not: if we’ve suppressed it in the superclass,
that’s an indication that something unusual is going on here, and in this case, we
feel that the user ought to be warned. The fact that the user is not warned in this
case introduces the risk that the user might inadvertently allow this method in
some subclass. Any time that humans must make the same decision several
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times is an invitation for one of those decisions to be incorrect, and all the
adversary needs is a single error. We saw several instances of this failure mode
in practice: in the hashCode(), equals(), and toString() methods. A related failure
can occur if subclasses have superclasses with methods that are dangerous. It
may not always be obvious when reviewing the superclass that the method is
dangerous, and the user might decide to allow the method while taming the
superclass and never consider it again, when it should be denied in a subclass.
Of course, in practice if the method is dangerous in some subclass it is prudent
to suspect that it may be dangerous in other subclasses as well. We saw an
example of this with the getComponent() method, which was enabled in
java.awt.ComponentEvent() but suppressed in some subclasses. One possible
solution to these two problems might be as follows: if a method is allowed in the
superclass, then the user is still queried about it in all subclasses, but if the
method is suppressed in the superclass, then it will be suppressed in all
subclasses as well. More research in this area would seem to be helpful, though.

A more dangerous bug related to subclassing is that if a method is allowed in the
superclass, overridden in some subclass, and marked as suppressed in that
subclass, then the method is still treated by EE as allowed. This was responsible,
for instance, for the RenderingHints vulnerability. We view this as simply a design
mistake in the semantics of SafeJ, and recommend that it be fixed.

In general, the taming mechanism is too complicated for us to have much trust in
our review of it. There are special cases for public final scalar variables, for
sugared classes, for unsafe classes not in the SafeJ database (the fall-through
behavior), and so on. It is not easy to find a single database listing all the taming
decisions (the SafeJ one is incomplete, because it doesn’t handle the legacy
mechanism, the fall-through behavior, or the other special cases), and this
makes it hard to review earlier taming decisions. In addition, the complexity of
Java adds extra potential for unexpected behavior. We are uneasy about all
these possible interactions, and we urge that more attention be paid to this
critical aspect of the EE architecture.   

4.5 EE

The final piece of the EE architecture that is needed to build a secure sandbox is
the EE language. EE is an interpreted language, and the interpreter is of course
trusted to enforce the sandboxing restrictions. Due to time limitations, we did not
review the entire implementation of the interpreter; instead, we focussed on
understanding the semantics of a few critical aspects of EE.

First, we examined all Kernel EE constructs. The EE language is actually translated
down to a subset, called Kernel EE, before execution, and so reviewing Kernel EE is
sufficient to check whether there are any instructions that might allow a
sandboxed application to break out of its sandbox. We did not find any worrisome
instructions.
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We reviewed certain aspects of the EE parser and interpreter. We found that the
architecture seems to be well-suited to enforcing memory safety, and we would
not expect to find any vulnerabilities here. We did find one bug: the EE parser
memorizes the result of parsing, so that parsing the same script a second time
will immediately return a cached copy of the parse tree. This is an important
performance optimization. However, the memo-ization was not based on all of
the relevant parsing context: scripts were matched on their text but not on extra
arguments that affected the parsing process. As a result, it was possible to cause
the EE parser to return incorrect parse trees. This does not appear to lead to a
security vulnerability in the context of the DarpaBrowser, but we suggest a
systematic review of all uses of caching to check for other instances of this error
and to make sure that all cached data is transitively immutable.

Next, a subtle aspect of EE is that a few extra synthetic methods are constructed
and added to every object. These are known as Miranda methods, and they
permit functionality such as asking an object to return its type. We were initially
concerned that this creation of artificial methods not specified by the programmer
might allow attacks, but after reviewing all the Miranda methods, we did not find
any reason for concern.

Along the way, we discovered a few interesting properties of the EE language. The
first relates to exceptions. In Java, there are two kinds of exception-like types:
exceptions, and errors. (The former are normally expected to be repairable, while
the latter indicate more serious conditions.) In EE, one can throw and catch any
Java exception, but not Java errors. This means that if one calls a Java object
inside an EE try-catch construct and the Java code throws an error, the EE catch
construct will not be triggered, and the error will propagate up to the top-level. An
obvious next question is: What is at the top level? In EE, the top level is an EE
object that services the run queue and executes each queued task. If execution
of some task throws an uncaught exception, this is caught by the EE run-queue
servicing routine, execution of that task halts, and the top level moves on to the
next task in the queue. However, if an error is thrown during processing of some
task, this is not caught by the EE run-queue servicing routine (errors cannot be
caught by EE code), and hence the error will terminate the Vat. This means that
malicious code might be able to kill the containing Vat, perhaps by calling some
Java code and tricking it into throwing an error. This is a denial-of-service attack.
Of course, in EE denial-of-service attacks are out of scope, but we thought we
would mention this unexpected property anyway for completeness.

The run-queue is an interesting entity. All EE code can append tasks to it by
issuing eventual sends, and the top-level run-queue servicing routine will
dequeue these one by one and execute them in turn. Thus, on first glance the
run-queue might appear to be a piece of mutable shared state. Fortunately, it
turns out that this seems to be safe: there does not seem to be any way to use
this to communicate between confined EE applications, and so the existence of a
global run-queue does not violate EE’s security goals. We suggest that verifying
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and possibly generalizing this property might make for an interesting piece of
research, though. Also, we note that every application can enqueue tasks for
execution. This is a form of ambient authority, albeit one that does not seem to
cause any harm. Nonetheless, in keeping with capability principles, we feel
required to ask: should applications be required to have a “enqueue” capability
before being allowed to enqueue tasks for later execution? We think the answer
is “no”, but perhaps there could be cases where one would like to deny an
application the ability to issue eventual sends, and in this case such a capability
would be useful.

The most surprising (to us) property of the EE language is that nearly everything is
a method call. For instance, the EE code “a+b” might appear like primitive syntax
that invokes the addition operator, but in fact in EE it translates to a method call to
object “a” asking “a” to add “b” to itself. Similarly, comparisons also translate into
method calls. This has implications for the construction of trusted code. Suppose,
for example, we build trusted code that accepts an integer, tests to make sure
that it is not too large, and passes it on to some other entity as long as this check
succeeds. Suppose also that the interface is exported to untrusted applications.
Unless great care is taken, it will likely be possible to fool this trusted code:
though the programmer might expect its argument to be an integer, there is
typically nothing enforcing this. An attacker might pass in a specially constructed
object, not an integer; this object might respond “true” to the first comparison
methods, so that the trusted code’s size check will succeed, but otherwise
behave as though it were a very large integer, so that when the object is passed
on to the final entity it will be treated as a big number. This is an example of a
simple time-of-check-to-time-of-use (TOCTTOU) flaw.

Our experience was that this sort of TOCTTOU error was surprisingly easy to
commit. For example, we found at least one successful attack on the
DarpaBrowser based on this idea; see below for details. As a result of this
analysis, we suggest a new design principle for writing secure EE code: whenever
one relies on values from an untrusted source, one should explicitly check that
those values have the expected implementation-type (using, e.g., an EE type
guard on the parameter list for the method). Moreover, when executing any
expression like “a+b”, the result is according to object “a” and so is no more
trustworthy than “a” (though “b” often does not need to be trustworthy). Though it
is reasonable to trust the behavior of base implementation-types like integers and
strings, one should exercise care with user-defined implementation-types. This,
of course, is an issue more about how to build secure user-defined code that is
exposed to untrusted applications, and does not impact sandboxed applications
which have no access to any trusted services.

Finally, EE separately considers confinement of capabilities (the authority to do
things) from confinement of bits. For bit confinement, EE also separates the
consideration of outward confinement (can a process write on a covert channel?)
from inward confinement (can a process read a covert channel?). The
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mechanisms described above provide confinement of capabilities. EE further
supports inward bit confinement in some limited circumstances. The mechanisms
for this are not described here because the requirements of the DarpaBrowser
put it outside the circumstances in which bit confinement is possible (specifically,
it can get to external sources of time and non-determinism) and covert bit
channels are out of the project’s scope.

4.6 Summary review of Model implementation

Our general conclusion is that the EE architecture seems to be well-chosen for
sandboxing untrusted applications. It seems to have several advantages over the
more familiar Java sandbox, which might allow it to provide a higher level of
security than Java does. Moreover, though we did not have time to exhaustively
review all source code, we found that the implementation seems to live up to
these goals (modulo a few repairable implementation bugs). EE’s elegant design is
marred only by the need for taming: the integration with legacy Java code is a
significant source of serious risks.

5. DARPABROWSER IMPLEMENTATION

This section describes the DarpaBrowser architecture, and reports on the
analysis and review of its implementation.

5.1 Architecture

The observed high-level architecture of the DarpaBrowser is shown below, with
particular focus on where the various security features were used.
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Figure 1 DarpaBrowser Overview

The DarpaBrowser architecture is fairly simple. The renderer is created by the
CapBrowser, with access to the RenderPGranter and no other authority. The
RenderPGranter acts as the Powergranter for the Renderer; it enforces the
security boundary and ensures that the renderer stays confined. In addition, the
entire browser runs as a confined object in the CapDesk system. The Powerbox
acts as the Powergranter for the CapDesk system to the DarpaBrowser. Thus,
the architecture diagram shows the high-level components for each of the
various layers, and shows where the security boundaries are between the layers.

The security goals are accomplished as follows. When the CapBrowser wants
to view a new web page, it instantiates a new renderer and passes it a capability
(reference) to the RenderPGranter. In the implementation we reviewed, there
is only one RenderPGranter per CapBrowser, so all renderers share the
same RenderPGranter. The RenderPGranter allows renderer to invoke
certain powers described below, such as changing the displayed page. When the
Renderer wants to display a new page, it requests that the new page be
displayed via an appropriate call to the RenderPGranter. This ensures that the
renderer and CapBrowser can update the address bar prior to showing the new
contents. 

We can see from the diagram that the renderer has the authority of the
RenderPGranter, and might have been handed authority from the
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CapBrowser. However, it cannot reach the PowerboxController or the
CapDesk: there is no path from the renderer to either of these components. This
illustrates the power of reachability analysis: we can already see that the only
components we need to analyze are the RenderPGranter, the CapBrowser,
and the Powerbox. 

5.2 What are all the abilities the renderer has in its bag.

One of the first tasks we performed in our review was to identify all the abilities
the renderer has in its “bag of powers”. This was identified by a reachability
analysis. We found the following:

1 The renderer can call a tracing service to output debugging messages.

2 The renderer get a reference (capability) to the javax.swing.JScrollPane
object representing the renderer’s portion of the browser window. Note
that the renderer does not receive a capability to the URL field or the
containing window, but does obtain a capability to the scrollbar.

3 The renderer can request the browser to change to a new URL by calling
RenderPGranter.gotoURL() and passing the URL as a string. This will
cause the CapBrowser to take several actions to keep the URL field in
sync and to enforce the desired security policy. The response of the
CapBrowser will be discussed in detail later.

4 The renderer can request that the browser fetch an image for it. However,
this is not yet implemented, and so no action is taken other than printing a
debugging message.

This is the list of all its powers. The first two are implemented as follows: the
RenderPGranter has a hashtable of object references that the renderer can
request. (In practice, the hashtable will have exactly two elements: a reference to
the tracing method and a reference to the scroll pane.)

5.3 Does this architecture achieve giving the renderer only the intended
power?

We note that, if these services are implemented correctly by the
RenderPGranter, the CapBrowser, and the Powerbox, then the renderer will
be successfully confined. In other words, this gives a workable architecture for
achieving the desired security goals.

Next, we discuss how well the implementation of these three components lives
up to the architecture discussed above.

5.4 CapDesk

As mentioned above, the CapDesk is unreachable from the renderer, and hence
a malicious renderer cannot exploit it in any way to escape the sandbox.
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5.5 PowerboxController

A similar comment goes for the PowerboxController. Of course, the
PowerboxController can help us achieve extra security by giving the
CapBrowser only the limited set of capabilities it will need. Withholding
capabilities from the CapBrower is doing it a favor: reducing the powers of the
CapBrower means that the CapBrowser cannot accidentally pass on those
powers to the renderer, even if there are bugs in the implementation of the
CapBrowser. This is a direct application of the principal of least privilege (give
no more authority than necessary). It provides belt-and-suspenders security:
even if the CapBrowser fails to implement the intended security restrictions on
the renderer and somehow leaks all its powers to the renderer, the impact of
such a failure will be limited to (at most) only those powers granted to the
CapBrowser by the PowerboxController. In the Combex implementation,
the PowerboxController and Powerbox do indeed limit the set of powers
given to the CapBrowser, allowing it to create new windows and to fetch URLs
across the network but not to write to arbitrary files on the hard disk. This
“defense in depth” is a very beneficial feature.

5.6 Powerbox

The Powerbox further limits the capabilities granted to the CapBrowser. It
allows the CapBrowser to call a restricted set of nineteen methods on Java
AWT/Swing windows, to load arbitrary files under the CapBrowser’s directory, to
load, run, and install new applications on the fly, to register itself as a target of
drag-and-drop operations, to request the user to approve access to a file on the
hard disk, and to request cut-and-paste operations. (The cut-and-paste
operations are mediated by the Powerbox, and hence not under total control of
the CapBrowser. This is because cut-and-paste operations can convey authority
from the user to the CapBrowser.)

We found one bug in the Powerbox: the capability granted to the CapBrowser
to read arbitrary files under its subdirectory was mis-implemented. In particular,
the Powerbox implemented this restriction by building a method that took a
relative filename, appended it to the CapBrowser’s directory, loaded this file
(using the Powerbox’s extra powers), and returning the result to the
CapBrowser. However, if the CapBrowser requested a filename of the form
“../foo”, then the Powerbox would happily let the CapBrowser read a file outside
of its directory, in violation of the Powerbox programmer’s intentions.

Though this flaw does not lead to vulnerabilities in the security goals of the
project, it does reduce the benefit of the “defense in depth” accorded by confining
the CapBrowser. If some security hole in the CapBrowser interface were found
that allowed a malicious renderer to compromise the CapBrowser, the flaw in
the Powerbox would heighten the impact of the second security hole. However,
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as we did not find any flaw of this sort in the CapBrowser, this flaw in the
Powerbox can be best seen as a reduction in assurance (the level of confidence
we have that the system is secure) rather than a serious security problem.

In any case, this bug was merely an implementation flaw, and in fact can be seen
as further substantiation for the value of the EE capability architecture. This bug
came from a failure to follow capability discipline. Capability discipline would be
to return a java.io.File object representing the CapBrowser’s directory,
rather than using strings to designate files; doing checks on endpoint objects is
usually safer than doing checks on strings.

5.7 CapBrowser

The CapBrowser exports a method, gotoURL(), to the RenderPGranter.
This method takes a URL as a string, confirms that this URL is a valid URL that
appears on the current page, adds this string to the history list, creates a
java.net.URL object for this URL (which conveys authority to fetch the
document named by this URL), and returns this java.net.URL object to the
renderer.  The renderer can then use this capability to fetch and display the
corresponding document.

In addition, the CapBrowser gotoURL() method will fetch the document a
second time and store it in textual format for later use by the RenderPGranter
to validate future URL requests. (There is a special case: if the URL names a
caplet, then the CapBrowser will download the caplet source and start it running
in the background.)

Note that this interface is exported only to the RenderPGranter, not to the
renderer. Also note that the RenderPGranter is allowed to ask for any URL
whatsoever to be loaded, whether or not it occurs on the current page.

5.8 RenderPGranter

The RenderPGranter is the primary enforcer of the security policy. It provides
the renderer the four powers listed above.

We found a significant vulnerability in the RenderPGranter’s hashtable of
capabilities. There is a single hashtable for all time, and each time a new
renderer is created, we create a new scroll pane for the renderer to draw in,
update the hashtable to contain a reference to the new scroll pane, and start up
the new renderer with a reference to the RenderPGranter, which will hand out
a reference to the current scroll pane upon request by doing a lookup in the
hashtable. Now the vulnerability is apparent: the previous renderer retains its
reference to the RenderPGranter and hence can request the scroll pane from
the RenderPGranter’s hashtable, thereby receiving a capability to the new
scroll pane. Now both the old renderer and the new renderer share a capability to
the new scroll pane. After this, all sorts of mischief are possible: for instance, the
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old renderer can overwrite the scroll plane with the contents of a previous web
page, even though the URL field shows the new URL, thereby violating the
“synchronization” property. As another example consequence, the old and new
renderers can now communicate and collude to violate the security policy, even
though they were intended to be isolated from each other.

This was an implementation mistake that is easily repaired. The lesson we
learned is twofold: first, functional programming and immutable state carry
security benefits; and second, wherever multiple applications are intended to be
isolated from each other yet all carry a reference to a single shared entity, we
should be very careful about security flaws. (Unfortunately, the latter property is
one that is not evident from the reachability graph, and so slightly more
sophisticated reasoning is needed. Fortunately, the reasoning required is not too
terribly difficult, and becomes considerably easier if functional programming style
and transitively immutable values are used.)

We found a second significant vulnerability in the RenderPGranter’s
enforcement of restrictions on the renderer. The RenderPGranter allows the
renderer to request loading of a new URL, and is supposed to ensure that this
URL is mentioned in the current web page; only if this check succeeds should the
RenderPGranter pass on this request to the DarpaBrowser. The
RenderPGranter performed this check by doing a substring match between the
requested URL string and the current HTML document. However, this substring
match is easily fooled: as a simple example, if the current document contains a
link that has been commented out, the substring check will still succeed on this
URL, and hence a malicious renderer could change to displaying this
commented-out link. Though the renderer does not gain unrestricted access to
the entire web, this is a violation of the security policy. The problem here can be
viewed as a failure of capability discipline: security checks are being performed
on strings rather than on the underlying objects that represent the entities to
which access is being requested.

We found a third vulnerability in this same code: in particular, it has a TOCTTOU
flaw, i.e., a race condition vulnerability. The code implicitly assumes that it is
being passed a String object containing the text of the requested URL, but it does
not check this assumption anywhere. Moreover, the code uses the parameter
twice, with the assumption that it will have the same value both times: once in the
substring check, and then later to actually ask the CapBrowser to fetch this
URL. In fact, it appears that these assumptions are invalid, and an attack is
possible. A malicious renderer could pass a specially crafted object that replies
with a valid-looking URL when it is first queried (during the substring check; note
that this substring check is performed using an EE quasi-parser, which issues a
method call to the underlying object), but replies with a maliciously chosen URL
the second time it is queried. This will bypass the security policy that the
RenderPGranter is trying to enforce and allow the malicious renderer to take
the browser to any URL whatsoever it can think of, whether on the Internet at
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large, in the local intranet, or perhaps even on the local file system. This
TOCTTOU implementation bug illustrates the need for a more disciplined style of
programming, such as use of type guards and care taken when handling
untrustworthy objects.

We found a fourth vulnerability as well, also a concurrency bug. Note that when a
new page is requested, the CapBrowser first calls the renderer to display the
page, then loads the HTML of this page and stores it in a variable shared with the
RenderPGranter; the RenderPGranter uses this variable to validate
requests to change pages. The problem is that nothing guarantees that the
renderer can’t request a new URL before the current page’s HTML has been
stored in the shared variable. For instance, consider the following sequence of
events. The web page for “www.yahoo.com” is currently showing. Suppose the
page “www.erights.org” is now requested. The CapBrowser will call
renderer.reactToURL(“www.erights.org”). In executing this method
call, the renderer calls RenderPGranter.gotoURL(“movies.yahoo.com“),
making sure to do this before the CapBrowser gets a chance to download and
save the HTML for the erights.org page into the shared variable. This request will
succeed, because “movies.yahoo.com” is linked to on the yahoo.com page and
because the shared variable has not yet been updated to contain the contents of
the erights.org web page. Yet this request should not have succeeded, according
to the security policy, because “movies.yahoo.com” is not linked to on the
erights.org web page. The impact of this race condition seems likely to be small
in practice, but it is a small implementation bug. This bug is fixable.

We understand that the problematic code in the RenderPGranter will be
replaced by a new implementation that follows capability discipline more closely.
In particular, the idea is for the RenderPGranter to parse the HTML document,
build a DOM tree, and replace all links by special objects representing the URL
and conveying authority to call back the RenderPGranter and request it to
change to that page. This modified parse tree will then be handed directly to the
renderer, and the renderer will request display of a new URL by selecting a
callback object from its parse tree and invoking it. We believe that this will greatly
increase the security of the implementation: it will defend against data-driven
attacks (so long as the web server is not in cahoots with the renderer), and it will
avoid the attacks described above. This is yet another example where following
capability discipline more closely would have protected the DarpaBrowser
against various attacks; thus, this experience seems to be at least as much of a
vindication of the capability architecture as it is a criticism of the current
implementation.

5.9 JEditorPane (HTMLWidget)

We paid special attention to the Java class javax.swing.JEditorPane,
which contains a Java HTML parsing and rendering engine. This class was made
available to all applications (by marking it “safe” in the SafeJ database) so that
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one could very easily construct a simple renderer: rather than having to write a
HTML parser and renderer afresh, one could simply reuse the existing Java
code. However, this strategy also carried some risks, as the JEditorPane is a
complex piece of code, not written with capability discipline in mind and
potentially replete with ambient authority. For instance, when handed a HTML
document, the JEditorPane will automatically load and display inline images
mentioned in the document. Since this is done without needing a
java.net.URL capability for the image from the caller, it means that the Java
code encapsulates extra authority beyond that explicitly handed by its caller, a
violation of capability discipline.

We did not identify any security vulnerabilities associated with the
JEditorPane. However, it does come with some risk: it is difficult to be sure
that the JEditorPane is not wielding ambient authority in some subtle way or in
some unexplored corner case. We note that Combex’s proposed new
implementation, based on parsing the HTML in the RenderPGranter, seems to
significantly reduce these risks, and we expect that the new implementation will
have excellent security properties.

5.10 Installer

EE contains a novel mechanism for downloading and installing untrusted or mobile
code. However, renderers are not installed permanently: they are transient code
loaded by the DarpaBrowser. Therefore, the installer seems to have no security
implications for the security goals of this exercise.

6. RISKS

This section describes the highest risk areas identified during the review.

6.1 Taming

The approach of taming the Java API has several risks.

The most serious risk comes from size and complexity: because the Java API is
large and growing, it is likely that incorrect taming decisions will be made,
thereby giving a malicious renderer a power it would not otherwise have had in
the absence of Java code. Indeed, specific incorrect taming decisions were
identified during the security review, and these could enable malicious renderers
to violate the intended security policy. 

This risk is partially mitigated by the use of a semi-objective rule for a taming
decision: “Does a particular method call use ambient authority?” Methods that
don’t provide the caller with any extra powers beyond that implied by the current
object can be safely allowed. In contrast, methods that wield ambient authority
should be suppressed. (In effect, we are trying to impose on Java the same
restrictions that the EE interpreter already enforces on EE code.) This guideline
provides a framework for thinking about taming decisions, and permits
independent review of the taming decision.
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It should be noted that the structure imposed by the taming question is crucial.
By comparison, a question of the form, “is a function safe enough to put into a
sandbox?” is hard to answer reliably (which raises the risk of incorrect taming
decisions) and highly subjective (and thus less amenable to satisfactory
independent review).

The taming process does not appear adequate for individual components with
substantial internal complexity or that use substantial authority. The HTMLWidget
illustrated this. For such cases, wrappers must be provided that explicitly manage
the authority allowed to the caplet. This is not feasible for large libraries. Because
of the object-oriented nature of Java, however, most of the Java libraries do not
fall into this category.

All the taming risks described above are amplified because the taming interface
is provided as a single bucket to applications. The result is that any incorrect
decision in all tamed API is exposed to all caplets, emakers, etc. Because the
Java APIs cover a broad range of applications, there is no need to allow such
exposure, and indeed it seems contrary to the overall POLA approach to the
system design. By factoring the Java APIs in separate tamed buckets, an
incorrect taming in one part of the API (e.g., user interface components) would
not be exposed to all components. 

6.2 Renderer fools you

A second risk is that the renderer might try to fool you by displaying material that
is not faithful to the intentions of the current web page’s author. Some examples:

1. The renderer could display the current web page poorly. It could show images
at degraded resolution, it could format the text strangely, and so on. This is
unavoidable.

2. Similarly, the renderer could ignore the current web page and display
something else entirely. One way this could happen is the renderer could
come with a malicious web page hard-coded: for example, perhaps with an
embedded link to your stock broker containing the “buy lots of stock symbol
S” action, in an attempt to fool the stock broker into thinking this request was
authorized by the user. Another example might be to include a link to
“/dev/mouse”; on some Unix systems, clicking on such a link may hang your
X Windows session. Alternatively, the malicious renderer might try to fool you
by showing a hard-coded web page containing spoofed content: e.g., a
forgery of a CNN page with a fake headline.

3. The renderer could show a modified version of the current web page. For
example, the malicious renderer could remove all ad banners. Or, the
malicious renderer could insert the word “not” randomly into a few well-
chosen sentences. As a third example, a malicious renderer could remove all
stories that say negative things about Democrats whenever you browse an
online news site.
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Of course, in each of these examples such a renderer cannot spoof the URL field
shown by the CapBrowser. Moreover, the renderer is limited by the fact that it
has no memory (a fresh copy is started up each time the user views a new web
page) and that the only web page it can fetch is the one specified in the URL field
shown to the user. The idea is that this will defend against an attack where a
malicious renderer, when asked to view one web page, fetches another one and
shows you the latter. In the Combex DarpaBrowser, a malicious renderer cannot
mount this attack, because the renderer can only show what is hard-coded in it.
A consequence of this is that if you download the renderer at time T, then the
renderer cannot know about anything that has happened after time T except for
what is contained in the web page it has been asked to display. Moreover, after
the current web page is discarded, the copy of the renderer that displayed this
page will be discarded as well, and so the renderer should be forced to
effectively “forget” what it learned from the current web page.

That’s the idea, anyway. In practice, the security level actually attained is
complicated by another consideration: covert channels. There are many ways
that a malicious renderer could try to subvert this basic approach by using covert
channels to gain extra information or to synthesize a form of memory. We give
two examples here:

1. The renderer could collude with another attacker across the network to show
you a page other than the one currently visited. Note that though the
malicious renderer cannot directly fetch any page other than the one currently
requested, it can communicate with its external co-conspirator by using any of
a number of covert channels, and the external co-conspirator, who is not
limited like the renderer, could look up other web pages on the malicious
renderer’s behalf and transmit them back.

2. Multiple instantiations of a malicious renderer could collude with each other.
Recall that a separate instantiation of the renderer is started for each web
page the user visits. However, the old renderer can arrange to continue
running in the background by issuing eventual sends. Consequently, we can
have multiple copies of the renderer running. Suppose we designate the first
copy as the “brain” and all subsequent copies as “slaves”. Note that the
“brain” can communicate with the “slaves” using any of a number of covert
channels (e.g., modulating the system load). Then each time a new slave is
created to render some web page, the slave could send a copy of that web
page to the brain, and the brain could direct the slave what to show in an
attempt to display something particularly pernicious. Note that this subverts
the intention that renderers be memory-less, although it does not really give
malicious renderers any other powers.

Covert channels seem very difficult to avoid. For instance, a malicious renderer
can communicate with an external colluder by modulating the order or timing in
which it fetches inline images (which it must surely be allowed to do). Multiple
malicious renderers running on the same machine could communicate by
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modulating the system load, and could derive a sense of time using the time-
stamps returned by web servers or by watching UI events. Covert channels have
been studied extensively in the security literature, and billions of dollars have
been spent trying to eradicate them, to little effect. 

In general, we consider all of the above attacks instances of “rendering poorly”. It
is impossible to avoid the possibility that a malicious renderer will render poorly;
even some well-intentioned renderers occasionally render web pages poorly, so
it is too much to expect that we can prevent malicious renderers from doing the
same at times. Rather than being a limitation of the Combex DarpaBrowser
architecture, the “rendering poorly” attacks seem to be unavoidable given the
problem statement.

6.3 HTML

HTML has evolved into a large and complex set of requirements with no coherent
underlying architecture. For the purposes of accomplishing the goals of the
project, there is substantial risk that HTML has features that are fundamentally
incompatible with the security goals (e.g., features that are inherently susceptible
to the confused deputy attack). For example, a Web form delivered from an
external site may designate a file inside the firewall as an inline image. As a
result, the page is expressing that the renderer should be able to read the file
behind the firewall, and should be able to send data outside the firewall. There
are more complicated variants of this scenario for which there are no simple
solutions that also consistent with the expectations of HTML authors, browser,
and users. In this example, features of HTML that evolved independently interact
to specify a circumstance in which gross security violations are possible. 

6.4 HTML Widget complexity

A fourth risk is that the JEditorPane (HTMLWidget) uses substantial ambient
authorities that might potentially lead to a security breach, if we are unlucky. Due
to the complexity of the Java code, we were unable to rule out this possibility in
our analysis. On the positive side, this risk definitely seems to be a distant fourth
place, compared to the other risks enumerated above.

Moreover, this risk seems to be not so much a limitation of the EE capability
architecture as it is a fundamental issue with interfacing with legacy code. Safely
integrating legacy code that wasn’t written with capability discipline in mind into a
capability-based architecture is not straightforward (if anything, it seems to be a
good question for further research), but is also outside of the scope of the FRT
project goals. Of course, it would be straightforward, but deeply time-consuming,
to re-implement a HTML parsing and rendering engine in EE, and this would
completely avoid the risks associated with the JEditorPane, but we see little
point in doing so. The current implementation already adequate makes the case
for the EE architecture. In short, legacy code integration seems to be orthogonal to
the goals of the DarpaBrowser exercise, so we do not interpret the risks
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associated with the JEditorPane as a shortcoming of the DarpaBrowser
architecture.

Finally, we mention that Combex has proposed a new implementation strategy
(discussed above) for mitigating this risk by following capability discipline more
closely. We believe that this second-generation implementation approach would
have excellent security properties, so there is a promising path for eliminating the
JEditorPane risks at fairly low cost.

7. CONCLUSIONS

This report detailed the results of an intensive analysis of the DarpaBrowser
architecture and the EE capability system. We were asked to assess the
architecture, and to look for classes of implementation bugs that might be
infeasible to fix within the architecture. We did not find any. (In this report, we
noted all implementation bugs we found, but implementation bugs that are easily
fixed within the EE/DarpaBrowser architecture were considered out of scope.) We
did find ways that the design of the system could be easily improved to further
increase the security provided by the Combex DarpaBrowser, but the existing
architecture already seems to provide a good basis for reaching the objectives
set out in the FRT project goals.

If one looks specifically at the current implementation, the implementation we
were provided was not adequately secure. It contained several serious
implementation bugs that would allow a malicious renderer to violate the security
policy. Therefore, the current DarpaBrowser implementation is not yet ready for
use in high-risk settings. On the other hand, all of the bugs we found are fixable
within the DarpaBrowser architecture, and they do not pose any serious
architectural risks that would be likely to affect the security of the DarpaBrowser
design.

Of course, the real goal of this review was to evaluate the DarpaBrowser
architecture, and this is where we focused our effort. Our evaluation is that the
architecture passes nicely. As a way to build sandboxes, the EE capability system
seems well-designed, and there are some reasons to expect that it may fare
better at this than the Java SecurityManager and other state-of-the-art
approaches, if given comparable resources. Indeed, if the DarpaBrowser
exercise is viewed as a test of our ability to build security boundaries, then we
believe the EE capability architecture was quite effective at this. In fact, it was so
easy to build security boundaries that the DarpaBrowser developers went ahead
and built three of them as a matter of course, even though the problem statement
only required a single security boundary. This is a testament to the EE
architecture.

The biggest security risk that stands out is the legacy Java interface. Because
this Java code was not designed with a capability architecture in mind, there is a
substantial risk that this integration with legacy Java code might create security
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breaches that allow sandboxed applications to escape their sandbox. However,
safely integrating legacy code was not one of the goals of the DarpaBrowser
exercise, so though we urge future research on this topic, we consider this issue
outside the scope of the exercise goals.

All in all, we believe that, by following the EE architecture, it is possible to build a
web browser that satisfies most of the security goals of the exercise. There were
a few goals that seemed fundamentally impossible to achieve—for instance,
avoiding collusion is as hard as stopping covert channels, which there are good
reasons to believe is an infeasible task—but this is not a shortcoming of the EE
architecture.

We wish to emphasize that the web browser exercise was a very difficult
problem. It is at or beyond the state of the art in security, and solving it seems to
require invention of new technology. If anything, the exercise seems to have
been designed to answer the question: Where are the borders of what is
achievable? The EE capability architecture seems to be a promising way to stretch
those borders beyond what was previously achievable, by making it easier to
build security boundaries between mutually distrusting software components. In
this sense, the experiment seems to be a real success. Many open questions
remain, but we feel that the EE capability architecture is a promising direction in
computer security research and we hope it receives further attention.
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Appendix 3: Draft Requirements For Next Generation Taming Tool
(CapAnalyzer)

The following items are required for a taming tool powerful enough to support
reliable yet cost effective imposition of capability discipline on large non-
capability toolkits. These requirements are presented as extensions to the
existing CapAnalyzer used during this project:

• Enable revision of existing safej files

• easily start anywhere

• do superclasses before subclasses

• do supertypes before subtypes

• checkboxes are: magic, suppressed, and settable set of buckets for statics for
instance stuff it is suppressed or not suppressed

• "it is on when the following eprop is on" checkmark

• as cursor rolls across methods, move focus to current comment field

• show javadoc for each method

• remember, it's not just method, it is public variables, and constructors

• fix the inner classes $ problem

• go at random to any class

• go to the superclasses from this class

• go to return types and arg types

• log classes for seeing which classes, which packages, reviewed, by whom,
when, how many times

• no interleaving instance things and static things

• make comment field append-only; when focus is moved, it is moved to end of
comment: previous comments are a label with the javadoc

• toggle to showing only methods etc. in a subset of buckets so you can see safe
and swing but don't bother with unsafe, for example.
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• toggle instance methods to show only safe, only unsafe, or both.

• in tool, public final scalars both static and non-static are turned on by default.

• create output which can be diff'd to existing version using simple text
comparators.

• automatically detect if a subclass overrides a method and the suppression in the
subclass and superclass are inconsistent.

• Include new choice for disallowed methods: "override" rather than "suppress".
Override will prevent the finding of the method even if the method is part of the
superclass rather than being just part of the current class. The method that does
the override will be automatically generated, and will throw the "no such method"
exception. A warning should automatically be presented if "suppress" is selected
for a class for which the method is also implemented in superclasses.
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Appendix 4: Installation Procedure for building an EE Language
Machine

INTRODUCTION

This document describes how to build an EE Language Machine (ELM). ELM is
the world's first capability secure computing platform with a graphical user
interface. It is invulnerable to traditional computer viruses and trojan horses, yet
is as easy to use as a conventional desktop. However, since ELM is currently
only a rudimentary prototype, it is not as fully featured as a modern desktop.

The basic parts of an ELM are:

• Linux core operating system

• Java Virtual machine

• EE Language Interpreter

• CapDesk point and click capability secure distributed file manager

The basic idea of an ELM is that the Linux core OS launches a Java Virtual
Machine, which launches an EE Interpreter, which launches a CapDesk. The
CapDesk file manager then seals off the underlying components of this Trusted
Computing Base (TCB) in such a fashion that neither Linux nor Java nor EE can
directly launch any additional applications: the only applications that can be
launched from a CapDesk are capability confined applications, or caplets. Two
example caplets are included with this distribution of ELM: a simple though
effective text editor (CapEdit), and an experimental non-production-quality Web
browser (DarpaBrowser), and a rudimentary Web server.

INSTALLATION OVERVIEW

The approach taken with this installation, to keep the process as simple as
possible, is as follows:

• Perform a standard Linux installation, including a KDE desktop. The KDE
desktop is used for bootstrapping: KDE supplies convenient, point-and-
click user friendly tools for completing this installation. Once basic
installation is complete, the KDE desktop is toggled off, and CapDesk
becomes the default desktop manager. GNOME can be used rather than
KDE if that is preferred; however, these installation instructions presume
KDE. Similarly, any modern distribution of Linux can be used, but this
installation guide specifically assumes RedHat 7.3. If you have received a
full ELM build package, rather than just this page of directions, you will
find Red Hat 7.3 disks included, along with a single ELM disc. If you have
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only this page of directions, all elements of this build can be downloaded
from the web, from Red Hat, JavaSoft, and Erights.org.

• Install WindowMaker, which will be the window manager for the ELM
CapDesk.

• Install the JavaSoft Jave Runtime Environment (JRE) version 1.4. Serious
problems with garbage collection have been found when using either
JavaSoft JRE 1.3 or the IBM JRE 1.3 (at this time there is no IBM JRE
1.4). These problems still exist with the 1.4 version, but they have been
mitigated, and do not degrade performance so rapidly that ELM cannot
operate for a reasonable period of time.

• Install the EE Programming Language, version 0.8.18 or later.

• Install CapDesk.

• Scan the Linux system for open ports and network services. Kill all
network connections that are not driven by CapDesk or one of its caplets.
These EE-based connections are capability secure and present no
cyberattack risks.

• Configure and toggle the system so that, at boot time, WindowMaker with
CapDesk is launched rather than KDE

• Reboot, and finish configuring WindowMaker

• Install CapEdit, DarpaBrowser, and CapWebServer

• You now have your own installation of the world's first point and click
desktop which is invulnerable to traditional computer viruses and trojan
horses.

Step One: Install Linux

By and large, an ELM Linux installation is a standard installation. Special
instructions are included for Grub and root passwords, firewalls, additional users
beyond root, and desktop/package selection. These instructions assume that the
ELM will be a single-user system; for a shared system, contact us at the email
address at the bottom of this manual for additional assistance.

1. Configure your computer to boot from cd-rom.

2. Boot from the Red Hat 7.3 disc

3. Select either the Workstation or Laptop setup. Do not select the Server
setup: the server option will automatically turn on large numbers of
network services that will have to be shut off again later in the ELM
construction process.
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4. Configure the keyboard, ethernet, etc. as appropriate. Choose to log in
graphically if you want to use the X windows security fix listed in these
instructions.

5. The Grub password, like the root password, is barely useful for an ELM,
and only for giving weak security against direct physical control by the
adversary. Frankly, against physical threats these passwords are of
limited value: the serious cracker will simply boot from cd-rom or floppy,
bypassing these defenses. In general, therefore, we recommend skipping
the Grub password. For the same reason, we recommend assigning a
simple root password. And go ahead and put that root password on a
sticky note on the monitor.

6. Firewall: on the firewall configuration screen, select No Firewall. Firewalls
are redundant on an ELM machine, except to the extent to which they
interfere with legitimate computing activities.

7. Add User: an ELM does not need or use access control lists, and
distinctions between "normal" users and "root", for security. Indeed, on a
capability secure desktop, this differentiation of access becomes a pure
liability: even though the access controls are superfluous, they can still get
irritatingly in the way while trying to get your work done ("oops, I copied
this file while under that other user name, and I don't have the authority
now"). 

Having completed this explanation of why non-root users are a bad idea on a
single-user ELM machine, we must confess that, with this rudimentary prototype,
there is one advantage to having a separate user account: it provides protection
against accidentally damaging system files. In a production version ELM, the
default file manager windows would be capability confined to operate only in the
user areas, and a special action would be needed to bring up a distinctly marked
window that browsed and edited system files. Regardless, these instructions
assume a user sophisticated enough not to shoot his own foot when given a
reasonably friendly graphical user interface, and all instructions here assume
only the root account exists.

8. On the Desktop/Package Selection screen, deselect GNOME. Select
KDE. Also select "Select Individual Packages", which is at the far bottom
of the screen and is easy to miss.

9. On the Individual Package Selection screen, navigate to User
Interface/Desktops and select WindowMaker.

10.On the following screen, choose to Install Packages to Satisfy
Dependencies for WindowMaker.

11.Complete the installation, reboot, and log in

Step Two: Install WindowMaker, Java, and EE
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1. Bring up a terminal (you can click on the Konsole icon on the toolbar).

2. Run "wmaker". This will install WindowMaker. Disregard the error
messages; these will disappear when KDE is shut off

3. Put in the ELM cd-rom. Mount the cd-rom. Copy the jre file (with the suffix
".bin") to the KDE desktop.

4. Execute the jre bin file from a terminal window. It will play the JavaSoft
terms and conditions. Type "yes" at the end to accept the conditions.

5. Accepting the JavaSoft agreement extracts an rpm file from the bin file.
Click on the rpm file; this will bring up kpackage.

6. In the kpackage dialog, select the j2re package and click Install. This will
unpack the JRE into /usr/java

7. In the /usr/bin directory, place a link to /usr/java/j2re1.4.0_01/bin/java. The
exact path will vary depending upon which release of java you are using.

8. Type "java" into a terminal. If your installation has succeeded, you will get
the help page for the java virtual machine.

9. Create a folder under /root named "elang".

10. Click on the EE tar.gz file on the cd-rom. This will bring up Ark.

11. Extract the EE tar.gz file into /root/elang.

12. In /root/elang, copy the eprops-template.txt file to eprops.txt. Edit
eprops.text. 

Change the "e.home=" line to

e.home=/root/elang/

Change the TraceLog_dir line to

TraceLog_dir=/root/etrace/

13.Create the folder /root/etrace/

14.Test CapDesk: in a terminal, type "java -jar /root/elang/e.jar
/root/elang/scripts/CapDesk.e" In general, you will receive a flurry of
warning and error messages which are irrelevant. If you start seeing a
series of printouts in the terminal such as "start" and "compiled maker
maker", the launch of CapDesk is proceeding successfully. Depending on
the performance characteristics of your computer, a window labeled "My
CapDesk" will arrive on your desktop in due course. Navigate by clicking
and double-clicking on folders, and the Up Directory button.
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15.Close the CapDesk window, shutting it down. If you leave CapDesk
running during the upcoming security check, it will be much more difficult
to ascertain which network services are security risks, since CapDesk
itself creates a number of secure network connections.

Step Three: Secure Machine Against Network Services

Even for laptop and workstation installations, RedHat by default turns on several
network services. And any variation in the Linux version being used could cause
other services to run as well. They all need to be shut off.

1. Make sure CapDesk is shut down.

2. In a terminal, run "lsof -i". This will give you a list of all the ports that are
open to attack. Your list may be different if you have varied even slightly
from the directions and version numbers herein. But the following items
typically need to be removed or modified:

3. Remove or rename /sbin/portmap

4. Remove or rename /usr/sbin/sendmail

5. Somehow configure the X server startup process with the "-nolisten tcp"
option. If you are using console login, this argument can be passed
through the startx command ("startx -- -nolisten tcp"). If you are using
XDM for graphical login, edit the /etc/X11/xdm/Xservers file. Append the
nolisten option to the startup command for the :0 X server: ":0 local
/usr/X11R6/bin/X -nolisten tcp".

6. Run lsof -i again to confirm that there are no active ports. If possible, run
an nmap scan of this machine from another machine, as a double check.

Step Four: Configure WindowMaker/CapDesk Startup

1. At the bottom of the file /root/GNUstep/Library/WindowMaker/autostart,
add the lines 

cd /root/elang
java -jar e.jar scripts/CapDesk.e & 

This will cause CapDesk to launch automatically during login to ELM.

2. Remove all the items that appear by default on the WindowMaker popup
window that are inappropriate for a capability secure desktop. This is
almost the entire list of standard options. We recommend replacing the file
/root/GNUstep/Defaults/WMRootMenu with this much shorter version
(though you may want to go into Windowmaker and set your theme and
style for the desktop before going all the way to this drastic extreme: you
can replace this file using CapEdit after you have otherwise completed
ELM if you prefer a lighter, brighter desktop than the default
WindowMaker):: 

("Applications",
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 ("Exit",
 ("Restart", RESTART),
 ("Exit", EXIT)
 )
 )

3. Use the KDE Desktop Switcher, or run "switchdesk" from a terminal, to
choose WindowMaker as the default window manager.

4. Restart your system. If all goes well, when you log in , you should come
up under WindowMaker, and CapDesk should launch automatically.

5. Double-click on the WindowMaker Preferences icon at the top right corner
of the screen. Go to "Miscellaneous Ergonomic Preferences". Choose to
make the Size Display show at the corner of the screen. Choose to make
thePosition Display show at the corner of the screen. Windows drawn by
Java seem to have trouble overrunning these realtime popups when they
are in the center of the window being adjusted.

6. Right-click on the terminal icon in the top right corner and pick "Settings"
off the popup menu. Delete "xterm" from the application path.

7. At this point you have constructed a full ELM workstation. It is possible for
users of even modest sophistication to break through the veil of capability
security in which Linux and Java have been wrapped, but it is not possible
to do so by accident. Since a person with physical access to the system
cannot be stopped from running any non-capability-application he wants to
run, if that is his dearest intention, this seems like a sensible tradeoff of
usability versus security for this rudimentary prototype of a capability
secure desktop.

Step Five: Confined Application Installation and Normal Operations

Navigation with CapDesk is typical of point and click file managers. Double-click
on a folder to open that folder's contents in the current panel; single click the
folder to see its contents in the next panel to the right. Press the Up-folder button
on the toolbar to navigate up through the directory tree. Type a folder path in the
field at top and press Enter to jump directly to a location. Right-click on a folder
and on a file to see the options that appear in the popup menu.

To install CapEdit:

1. Browse in a CapDesk window to /root/elang/caplets/capEdit/

2. Right-click on the file capEdit.caplet. Choose "Install" from the popup
menu.

3. Choose a name, an icon, and a default document suffix for CapEdit. You
can simply click "Finish Installation", accepting the defaults.
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4. There are several ways to bring up CapEdit and edit a file. Double-click on
a file with the CapEdit suffix (".txt" by default). Or right-click on any file,
choose "Open With" from the popup menu, and select CapEdit. Or, to
launch CapEdit with a file, right-click on capEdit.caplet and choose "Run".

5. Once CapEdit is up and running, you can open additional files either with
the Open File button on the CapEdit toolbar, or by dragging and dropping
files from a CapDesk file manager window.

6. Note: the cut/copy/paste buttons on the bottom of the window (the
powerbar) are non-operational. However, control-x/c/v do cut/copy/paste. 

To install CapWebServer:

1. Navigate to the capWebServer folder in /root/elang/caplets/capWebServer

2. Right-click on the file capWebServer.caplet. Choose "Install" from the
popup.

3. This installation dialog has two tabs. The first is identical to the CapEdit
tab. The second tab offers Server authorities. Choose to grant a server
port (port 80 is the standard web server port, change it if you like, but you
will need to specify any nonstandard port in the URLs for the web
browsers thereafter). Choose also to allow the web server to run
"independently". It will still be capability confined, but it will run on a
separate java vm, which will make CapDesk itself more responsive.

4. To run the web server, right-click on a folder that is configured as the root
of a set of page document folders. There is an example root doc folder in
the CapWebServer folder. Right-click on this, and Open
With...CapWebServer.

5. A dialog box should come up after the separate jvm has launched the
server is operational. To terminate the server, click the Terminate button
or close the window. In general, you will want to minimize this dialog box.
The web site being served can be reached by simply going to
http://localhost/ using the DarpaBrowser. Any other web browser can
connect and use it as well; keep in mind, however, that this is a
rudimentary prototype. 

To install DarpaBrowser:

1. Navigate to the DarpaBrowser folder by the CapEdit folder.

2. Right-click on either darpaBrowser.caplet (for the simple demonstration
version) or darpaBrowserMemless.caplet (for the testbed version) .
Choose to install. Note: you can install both if you prefer, just make sure
that they have different pet names (which will happen automatically if you
just choose the default pet names).
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3. Note that this installation dialog has two tabs. The first tab is identical to
the CapEdit tab. The second tab offers web protocol authority. Choose
http protocol. Note: file protocol does not work at this time.

4. Right-click on darpaBrowser.caplet and choose Run to launch the
browser. If you are connected to the web, type a URL, such as
"http://www.combex.com" into the Goto field and hit Enter to begin
browsing.

5. The "copy" button on the powerbar is operational, and can be used to
copy text to be repasted into CapEdit documents.

6. The DarpaBrowser is not currently able to read local html files; it must
access its pages via http (though if you have a web server running on
localhost, that can be accessed).

7. You can explore alternate renderers by selecting the Choose Renderer
button. By default, the DarpaBrowser starts with its benign renderer;
DarpaBrowserMemless starts with capTreeMemless. The textRenderer
only works with the demo DarpaBrowser. The benignMemless renderer
only works with the testbed DarpaBrowserMemless. The evil renderer,
which is by far the most interesting renderer, works with both browsers.
This renderer will attack your system in an attempt to take control. It will
report on its results as it attempts various breaches. When run unconfined
on a Windows or bare Linux system, these attacks are successful.
However, here on the CapDesk, they all fail. One of the pages in the
sampleRootDoc for the CapWebServer shows the results of these attacks
if the malicious renderer is run with standard Windows/Linux authorities.

8. Each of the renderers has strengths and weaknesses. None of them are
production quality; they were all designed for research, not daily
operations. 

The two benign renderers paint pages quite well, but are extremely fickle
about the HTML they accept and consequently many, many pages on the
Web cannot be rendered (including the Google home page, for example).
A particular problem for the benign renderer is the meta tag <meta http-
equiv="Content-Type" content="text/html; charset=iso-8859-1">. This tag,
which is becoming ubiquitous, is misinterpreted by the Java JEditorPane
widget's parser to have a "/html" tag embedded in it, with catastophic
consequences. The home pages for Combex,

http://www.combex.com, and for the EE platform, http://www.erights.org,
have been carefully edited to ensure that they will work with this renderer.
So have all the pages in the sampleRootDoc for the CapWebServer.

The textRenderer will successfully render any html page no matter how
badly formed the HTML; however, it is an uninteresting presentation,
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simply being the source text of the page. CapTreeMemless will render
most Web pages, but the output is far from attractive, and long pages
(such as the EE in a Walnut page) will fail.

To shut down ELM: Right click anywhere on the WindowMaker background.
Choose Exit/Exit off the popup menu to shut down.

Congratulations! You have an operational CapDesk system.

Step Six: Maintenance

The CapDesk capability secure desktop is just a rudimentary prototype at this
time. While much of the maintenance of a Linux machine can be done using the
CapEdit text editor to modify config and startup files, it may occasionally be
convenient or necessary to use the tools available from the KDE desktop. When
logging in, select kde or failsafe from the Session Type menu on the login dialog.
Perform maintenance as required. Upon rebooting, select Session Type default
to return to the CapDesk configuration.

IN CASE OF EXTREME DIFFICULTY

Contact Marc Stiegler at marcs@combex.com for further assistance

.
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Appendix 5: Powerbox Pattern

The powerbox pattern will be incorporated into the next release of EE in a
Walnut, which is at this time the definitive work for practical programming
in the EE language. This is a draft for the powerbox section of the book.

The powerbox pattern collects diverse elements of authority management into a
single object. That object, the powerbox, then becomes the arbiter of authority
transfers across a complex trust boundary. One of the powerbox's most
distinctive features is that it may be used for negotiations of authority. The less
trusted subsystem may, during execution, request new authorities, and the
powerbox operator may, in response to the request, depending on other context
that it alone may have, decide to confer that authority.

The powerbox is particularly useful in situations where the object in the less
trusted realm does not always get the same authorities, and when those
authorities may change during operation. If the authority grant is always the
same and does not change during operations, a simple emaker-style
authorization step suffices, and a powerbox is not necessary. If the situation is
more complex, however, collecting all the authority management into a single
place can make it much easier to review and maintain the extremely security-
sensitive authority management code.

Key aspects of the powerbox pattern include:

• A powerbox uses strict guards on all arguments received from the less
trusted realm. In the absence of guards, even an integer argument
received from untrusted code can play tricks: the first time the integer-like
object (that is not really an integer) is asked to "add", it returns the value
"123"; but the second time, it returns the value "456", with unpredictable
(and therefore insecure) results. An ":integer" guard on the parameter will
prevent such a fake integer from crossing into your realm. 

• A powerbox enables revocation of all the authorities that have been
granted. When you are done using a less trusted subsystem, the
authorities granted to it must be revoked. This is true even if the
subsystem is executing in your own vat and you nominally have the power
to disconnect all references to the subsystem and leave the subsystem for
the garbage collector. Even after being severed in this fashion, the
subsystem will still exist for an unbound amount of time until the garbage
collector reaches it. If the authorities it has received have not been
revoked, it can surprise you with its continued operations, and continued
use of authority. 

Not all kinds of objects in the Java API can be made directly revokable at
this time, because an EE revokable forwarder cannot be used in all the
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places where an actual authority-carrying Java object is required. For
example, if the untrusted object may want to create a new image from an
url. The natural way of doing this would be to call the Java Icon class
constructor with (url) as the argument. But if an EE forwarder were handed
to this class constructor, the constructor would throw a type exception.

There are different solutions in different situations. In this example, it may
be acceptable, to require that the untrusted object read the bits of the
image from the url (through a revokable forwarder) and then convert the
bits into an icon.

• A new powerbox is created for each subsystem that needs authorities
from within your trust realm. If a powerbox is shared across initiations of
multiple subsystems, the powerbox may become the channel by which
subsystems can illicitly communicate, or the channel by which an obsolete
untrusted subsystem can interfere with a new one. When the old untrusted
subsystem is discarded, its powers must all be revoked, which necessarily
implies that a new subsystem will need a new powerbox. 

In the following example, the less trusted object may be granted a Timer, a
FileMaker that makes new files, and a url. The object may request a different
url in the course of operations, in which case the powerbox will ask the user
for authorization on the objects's behalf; the old url is revoked, and the new
one substituted, so that the object never has authority for more than one url at
a time. The object that operates the powerbox may revoke all authorities at
any time, or it may choose to revoke the Timer alone. Finally, the operator of
this powerbox may, for reasons external to the powerbox's knowledge, decide
to grant an additional authority during operations, an authority whose nature
is not known to the powerbox.

# The authorized url may change during operations, so it is a var
def makePowerboxController(optTimer,
              optMakeFile,
              var optUrl,
              optMakeUrl,
              makeDialogVow) {
  
  # In the revokers map, the object being revoked is the key, the revoker
  # is the value. Note it is the actual object, not the forwarder to the
  # object, that is the key.
  var revokers := [].asMap()
  
  # when a revokable forwarder is made, the revoker is automatically
  # placed in the map of revokers
  def makeRevokableForwarder(object) :near {
    var innerObject := object
    def revoker {
      to revoke() {innerObject := null}
    }
    revokers with= (object, revoker)
    def forwarder extends(innerObject){}
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  }
  
  # makeFileFacet is exposed to less trusted realm; guard the path it receives
  # This simple file facet only supplies two methods that return immutables
  # If the file handed out mutable objects, such as streams, these would have
  # to be wrapped with revokableForwarders as well.
  def makeFileFacet(path :String) :near {
    def theFile := optMakeFile(path)
    def fileFacet {
      to getText() :String   {theFile.getText()}
      to setText(text :String) {theFile.setText(text)}
    }
    makeRevokableForwarder(fileFacet)
  }
  
  # makeFile is actually handed to the less trusted object
  # It is either null or a revokable forwarder for makeFileFacet
  # In other words, makeFile is a revokable maker of revokable file facets
  def makeFile
  if (optMakeFile == null) {
    bind makeFile := null
  } else {
    bind makeFile := makeRevokableForwarder(makeFileFacet)
  }
  
  def makeRevokableUrlFacet(optUrl) :near {
    if (optUrl == null) {
      null
    } else {
      def urlFacet {
        to getBytes() :pbc {optUrl.getBytes()}
      }
      makeRevokableForwarder(urlFacet)
    }
  }
  
  # Return a vow for a new url 
  # Use dialog with user to determine if new url should be granted
  # Vow resolves to null if anything goes wrong
  def makeRevokableUrlVow := {
    def makeUrlVow(requestedUrl :String, why :String) :vow {
      def urlDialogVow := 
       makeDialogVow("Url Request",
              `<html>
Confined Object requesting url for this reason:<p>$why
</html>`,
              requestedUrl,
              ["Grant", "Refuse"])
      when (urlDialogVow) -> done(dialog) {
        if (dialog.getButton() == "Grant") {
          optUrl := optMakeUrl(dialog.getText())
          makeRevokableUrlFacet(optUrl)
        } else {null}
      } catch prob {null}
    }
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    makeRevokableForwarder(makeUrlVow)
  }
  
  
  var caps := [].asMap()
  caps with= ("TIMER", makeRevokableForwarder(timer))
  caps with= ("FILEMAKER", makeFile)
  caps with= ("URL", makeRevokableUrlFacet(optUrl))
  
  def powerbox {
    
    # any of these capabilities may be null, i.e., all are optional
    # in a powerbox, strictly at the whim of the powerbox operator
    # who created the powerboxcontroller and the powerbox
    to optCap(key :String) :any {caps.get(key, null)}
    
    # When the less trusted object requests a new url, the
    # old url is immediately revoked, and the promise for the
    # new url is substituted
    # If the powerbox has revokedAll, any attempt to requestUrl
    # will throw an exception back to the untrusted object
    # The "why" parameter is the less trusted object's justification
    # for needing the url
    to requestUrl(requestedUrl :String, why :String):vow {
      if (optUrl != null) {revokers[optUrl].revoke()}
      revokableUrlVow := makeRevokableUrlVow(requestedUrl, why)
      caps with= ("URL", revokableUrlVow)
      revokableUrlVow
    }
  }
  
  def powerboxController {
    to revokeAll() {
      for each in revokers {each.revoke()}
    }
    to revokeTimer() {revokers[timer].revoke()}
    # Confer an additional capability during execution
    to conferCap(key, cap) {
      caps with= (key, makeRevokableForwarder(cap))
    }
    to getPowerbox() :any {powerbox}
  }
}
 
# now, show how to create a powerbox and hand it to an untrusted object
 
def makeUntrustedObject(powerbox) :any {
  def timer := powerbox.optCap("TIMER")
  def urlVow := powerbox.requestUrl("http://www.skyhunter.com")
  def untrustedObject {
    #...
  }
}
 
def powerboxOperator() {
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  def makeDialogVow {#...construct dialog vow
           }
  # use real objects, not nulls, in typical operation, though nulls are valid arguments
  def controller := makePowerboxController(null,
                       null,
                       null,
                       null,
                       makeDialogVow)
  def powerbox := controller.getPowerbox()
  def untrusted := makeUntrustedObject(powerbox)
  # later, confer an additional authority
  def special
  controller.conferCap("SPECIAL", special)
  # when done with the untrusted object, revoke its powers
  controller.revokeAll()
}

89



Combex/Focused Research Topic 5/BAA-00-06-SNK 11/18/2002

Appendix 6: Granma's Rules of POLA

How difficult is it to operate a capability secure desktop? As demonstrated by
CapDesk, all the ordinary techniques, from file dialog boxes to drag/drop
metaphors, work pretty much the same as under Windows/KDE/Mac. There are
no passwords or certificates or funny little security dialog boxes. So a capability
secure desktop is no more difficult to operate than any other desktop.

Ah...but how difficult is it to operate a capability secure desktop securely? Can
real people really follow the rules that will protect them from Melissa viruses and
Sub7Server Trojan horses? Because even with capabilities, despite the absence
of passwords and certificates, we are still depending on normal human beings to
make authority-granting decisions. This appears most clearly during the
installation of a new application, at which time the application can be endowed
with default authority (so a Web browser, for example, would sensibly ask for,
and often sensible receive, http-protocol read/write authority).

Anyone who has ever installed a firewall or set up a Unix access control list can
be forgiven for being skeptical that authority-granting can be made easy enough
for the normal person. Yet capabilities implementing the Principle of Least
Authority represent a paradigm shift from IPCHAINS as great as the shift that
took us from the TECO line editor to MacWrite. No real human being could use
TECO; five year old children can use MacWrite.

Herewith, then, are Granma's Rules Of POLA. There are six of them. They are
simple and easy to follow for anyone who has seen a CapDesk in operation.
They do not fulfill every subtle desire one might have for secure operations in the
deepest heart of the NSA. And perhaps the list is not complete--the list has not
had the important experience of being attacked by a thousand crackers yet.. But
these rules fulfill Granma's needs, allow her to do everything she wants to do
without any annoyance from her security system, and the rules have at least
passed the scrutiny of the E-lE-lang capability security community reasonably
unscathed. You can read the entire   E-lE-l  ang thread about these rules   in the
pipermail archive. To give the context in which these rules were devised, which
explains the threats against which these rules are successful, part of the original
email about these rules is excerpted below.

Will every person on earth follow every one of these rules perfectly every day? Of
course not. But there is a good chance that you, personally, can follow these
rules very consistently. So at least you personally will be safe. And even if
someone, somewhere, lets a virus activate on their system, the chances that one
of the people to whom that future Love Bug mails itself will allow themselves to
become infected as well is small. Epidemiologically, rates of transmission would
fall low enough that new viruses get no traction and cannot spread. At least, that
is our belief. Take a look at the rules, and judge for yourself.
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GRANMA'S RULES

1. If an application, during installation, proposes for itself a name or an icon that
looks a lot like the name or the icon of something else, give it a new name
and new icon.

2. If an application asks for a bunch of different authorities, just say no.

3. If an application asks for read or edit authority on anything outside the
Desktop folder, just say no.

4. If an application asks for edit authority on a bunch of stuff, just say no.

5. If an application asks for wide-ranging access to the Web, rather than access
to one or two specific sites, only say yes if you plan to use the application as
a Web browser.

6. If an application asks for read authority on a bunch of stuff, and also asks for
a connection to the Web, just say no.

Notes: Rule 3 is only required by a CapDesk-style implementation of a capability
secure desktop. A totally full-powered design, based on a capability secure OS in

addition to a capability secure language, would not need this rule. Rule 4 was
added in the course of the E-lE-lang discussion reviewing the original list; the rest of

the list is essentially the same as the original. Rule 6 is actually not needed to
meet Granma's security goals (since she has no confidential data she is worried
about having stolen, as described below), but is an easy enough rule to follow,

we included it anyway.

EXCERPT FROM ORIGINAL EMAIL, GRANMA'S RULES OF POLA

As I have toured the countryside in the last month giving presentation about the
capability secure desktop (see the screenshots under the Technology section at
http://www.combex.com, they are pretty cool), there's a particular point I keep
making that needs to be backfilled with real data. The particular point is, "The
typical home user only has to follow six or seven simple rules to be safe from
viruses and trojan horses." It would really be good to know what those rules are.

Herewith, then, is a proposed list of Granma's Rules of POLA. The rules are at
the bottom of this email; first we must set the stage by describing the threat
model which Granma faces, and her interests in the face of the threat.

Granma does not have security needs like a guy working in a compartment at the
NSA. She really doesn't have any terribly confidential information: if someone
breaks in and steals all the email she has exchanged with her adorable thirteen-
year-old grandson Bobbie, it will not make for good blackmail material, and
doesn't enable insider trading. Everyone who knows her thinks she is a cool
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octogenarian; no one is explicitly targeting her, unique in all the world, for a
customized attack.

All Granma wants to do with her computer is browse the web for new cookie
recipes, send email to her grandson, create and print clever Valentine's Day
cards of her own devising, and play Nancy Drew Virtual Reality Team with her
granddaughter. This requires that she be able to download and try card-creation
applications (drawing packages, word processors, etc.) and the same for mystery
games. She needs to not fear opening attachments sent with her grandson's
name on it...she has heard, though she doesn't exactly understand how, people
can send her email with Bobbie's name on it but with malicious contents.

She is terrified of having her computer taken over by some thirteen year old who
is not as adorable as Bobbie, and having her computer used for nefarious
purposes (she doesn't know that the FBI might come knockin' on her door some
day if someone used her computer in a DDOS attack, but if she did, she would
recognize that that is a reason why bad kids shouldn't be allowed to control her
machine).

Granma is also terrified of someone breaking in and stealing her money. She
uses the computer to tell the Social Security Admin where to deposit her checks,
and she has been thinking about getting a digital cash account using Hansa
Dollars or e-gold rather than those blasted credit cards, but she won't put real
money on her computer until she thinks it would be safer to have money on her
computer than it would be to throw the money into the intersection of 5th and
Vine.

Bobbie, her adorable grandson, not only loves Granma's choco-chip cookies, but
is also wanted in fifteen states by the FBI for computer cracking. He knows just
how dangerous it is out there, and wants to make sure Granma can't be attacked
by some creep with no more ethics or scruples than...uh...himself. When he sees
CapDesk as an alternative, he immediately loads up his own computer and
Granma's computer so that they can both be safe.

Here are the rules he gives Granma as he completes installation, and shows her
how to drive around:

• If an application, during installation, proposes for itself a name or an icon that
looks a lot like the name or the icon of something else Granma already has,
give it a new name and a new icon. Don't be shy Granma, it's your computer
and your application!

• If an application asks for a bunch of different authorities, just say no. No
legitimate application needs many authorities. (well, except for things like
development environments, which Granma doesn't need to worry about).
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• If an application asks for read or edit authority outside the Desktop folder, just
say no. (the current draft layout of stuff in a CapDesk world is,
~/Desktop/MyDocuments contains docs, ~/Desktop has stuff you're currently
working on, ~/caplets contains applications, an ~/capData contains info for
and about those applications. Proposals for rearranging folders are welcome).
Granma, you shouldn't go mucking around outside ~/Desktop either :-) (a real
installer, unlike the current CapDesk installer, would copy the caplet
executable into the ~/caplet directory for the user as part of the installation).

• If an application asks for read authority on a bunch of stuff, and also asks for
a connection to the Web, just say no. (granma doesn't quite need this one,
but it is a good rule anyway).

• If an application asks for wide-ranging access to the Web, like a of the http
protocol, only say yes if she plans to use it as a Web browser, or if Bobbie
says it is ok. A Nancy Drew shared reality team game should only need an
Internet connection to one place at a time.

So, there is my draft list, with comments in parentheses that are extraneous to
Granma. There's only five of them, room for a forty percent increase before there
are more rules than I've been telling people :-)

What clever and terrible attacks can folks think of that will beat these simple
rules? In what ways is my specification of Granma's needs and interests
incorrect, that requires more flexibility than allowed by these rules?
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Appendix 7: History of Capabilities Since Levy

The history of capabilities was first chronicled by Henry Levy in 1984. 

History of Major Descriptor and Capability Systems according to Henry Levy's famous 1984
survey book "Capability-Based Computer Systems" [Levy84].
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Not surprisingly, work on capability systems continued since the publication of
this book. The major capability milestones absent from Levy's table are

System Developer Year Attributes

Actors MIT AI Lab
[Hewitt73] 1973

1st capability language
lambda calculus as distributed capabilities
distributed capability protocol sketch

LINCS Lawrence Livermore
[Donnelley81] 1981 Full distributed capability protocol

Concurrent
Prolog

Weizmann Institute
[Shapiro83] 1983 Horn-clause inference as distributed

capabilities

KeyKOS Key Logic
[Hardy84] 1984

Orthogonal persistence
Modern capability patterns
including confinement

Amoeba Vrije University
[Tanenbaum86] 1986 Distributed password-capability OS

Distributed
Mach

CMU
[Sansom86] 1986 Transparently distributed capability OS

Vulcan Xerox PARC
[Kahn86] 1986 1st unification of Actors and Logic styles of

distributed capabilities

i960/Gemini Intel 1989 integrated, object-based multiprocessing
architecture

W7 MIT AI Lab
[Rees95] 1995 Scheme as local-sequential-imperative lambda

capabilities

Joule Agorics
[Tribble96] 1996 2nd unification of Actors and Logic styles of

distributed capabilities

ToonTalk Animated Programs
[Kahn96] 1996 Animated capability programming for children

Original-EE
Electric Communities
[Morningstar??] 1997 Unification of distributed and local-sequential

models of capability computation.

EROS UPenn, JHU
[Shapiro99] 1998

High performance open-source KeyKOS
descendant.
Formal verification of confinement.

EE

Electric
Communities, 
ERights.org,
Combex
[Miller00, Yee02b]

1998 1st language-based confinement.
Guards, Auditors

Waterken Waterken
[Close99] 1999 Web integration: capabilities as URLs

Language-based persistent capabilities
E-
Speak2.2Beta

HP
[Karp01] 1999 Split capabilities. Better scaling of complex

policies.

SPKI

Intel, Electric
Communities, 
Microsoft, MIT LCS, 
Southwest Bell, SSH
[Ellison99]

1999 Public-key infrastructure as an off-line
capability-like system.

CapDesk,
DarpaBrowse
r

Combex
[Yee02a, Wagner02] 2002 Virus invulnerable capability desktop and

application launching framework

Major capability systems and milestones absent from [Levy84]. All dates are approximate --
these systems were or are ongoing projects without unambiguous birth dates.
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The following diagram shows the influences directly relevant to our own work on
E.E.

EE in context. This diagram does not show all the major influences between these systems. It
only shows the influences relevant to the creation of EE, or of systems derived from EE.

The blue nodes & green arcs are those that have "capability nature", even
though most of these systems were not capability secure, and were not
conceived of by their inventors as having any relationship to capabilities or
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security. Nevertheless, these are the systems to study in order to gain insight into
the nature of capability computation. Of the blue nodes, the ones in italics are
actual capability systems. Of the green arcs, the thicker light-green ones show
the most influential paths. The thicker light-green arcs below E E lead to systems
that were derived from E E in their original conception. The others are retrofits of EE
concepts into existing systems.

The loop: E E and EROS have influenced each other. Both directly, and through
our joint descendant, CapIDL.
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